Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting

In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2015-12, Vol.26, p.263-273
Hauptverfasser: Xiao, Qizhen, Dai, Binxiang, Xu, Bingxiang, Bao, Longsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue
container_start_page 263
container_title Nonlinear analysis: real world applications
container_volume 26
creator Xiao, Qizhen
Dai, Binxiang
Xu, Bingxiang
Bao, Longsheng
description In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.
doi_str_mv 10.1016/j.nonrwa.2015.05.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762073833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121815000681</els_id><sourcerecordid>1762073833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</originalsourceid><addsrcrecordid>eNp9UMtOIzEQHK1AWgj7B3vwcS8T3HbicS4rIcRLIHFhz5anpyc4mrEH2wnKbf-BP-RLMApnpJK6pK6qVldV_QY-Bw7qfDP3wcdXOxcclnNeAOJHdQK60fWygdVR4QulaxCgf1anKW04hwYknFSb2zAGHJx3yFrXbyPa7IJnfYjMsjV5inZgKdtMdUcT-Y58ZvdhGMM6xLBjeT8RmyJ1Nof4_v-t0D0bQ0cDe3X5mT3buKOUnV-fVce9HRL9-pqz6t_11dPlbf3weHN3efFQo5SrXAuBne0lLXjbKWm1bUAprdoehdIWe1ypFrGsSLcc-kYgSoVFwzlf8pbLWfXnkDvF8LItt83oEtIwWE9hmww0SvBGaimLdHGQYgwpRerNFN1o494AN5_Vmo05VGs-qzW8AESx_T3YqLyxcxRNQkceqXORMJsuuO8DPgDTCIgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762073833</pqid></control><display><type>article</type><title>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Qizhen ; Dai, Binxiang ; Xu, Bingxiang ; Bao, Longsheng</creator><creatorcontrib>Xiao, Qizhen ; Dai, Binxiang ; Xu, Bingxiang ; Bao, Longsheng</creatorcontrib><description>In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2015.05.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcations ; Constant-yield harvesting ; Differential equations ; Geometry analysis ; Harvesting ; Homoclinic bifurcation ; Impulsive control ; Kolmogorov model ; Mathematical models ; Predators ; Resource management ; Stockings ; Strategy</subject><ispartof>Nonlinear analysis: real world applications, 2015-12, Vol.26, p.263-273</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</citedby><cites>FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nonrwa.2015.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Dai, Binxiang</creatorcontrib><creatorcontrib>Xu, Bingxiang</creatorcontrib><creatorcontrib>Bao, Longsheng</creatorcontrib><title>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</title><title>Nonlinear analysis: real world applications</title><description>In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.</description><subject>Bifurcations</subject><subject>Constant-yield harvesting</subject><subject>Differential equations</subject><subject>Geometry analysis</subject><subject>Harvesting</subject><subject>Homoclinic bifurcation</subject><subject>Impulsive control</subject><subject>Kolmogorov model</subject><subject>Mathematical models</subject><subject>Predators</subject><subject>Resource management</subject><subject>Stockings</subject><subject>Strategy</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOIzEQHK1AWgj7B3vwcS8T3HbicS4rIcRLIHFhz5anpyc4mrEH2wnKbf-BP-RLMApnpJK6pK6qVldV_QY-Bw7qfDP3wcdXOxcclnNeAOJHdQK60fWygdVR4QulaxCgf1anKW04hwYknFSb2zAGHJx3yFrXbyPa7IJnfYjMsjV5inZgKdtMdUcT-Y58ZvdhGMM6xLBjeT8RmyJ1Nof4_v-t0D0bQ0cDe3X5mT3buKOUnV-fVce9HRL9-pqz6t_11dPlbf3weHN3efFQo5SrXAuBne0lLXjbKWm1bUAprdoehdIWe1ypFrGsSLcc-kYgSoVFwzlf8pbLWfXnkDvF8LItt83oEtIwWE9hmww0SvBGaimLdHGQYgwpRerNFN1o494AN5_Vmo05VGs-qzW8AESx_T3YqLyxcxRNQkceqXORMJsuuO8DPgDTCIgY</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Xiao, Qizhen</creator><creator>Dai, Binxiang</creator><creator>Xu, Bingxiang</creator><creator>Bao, Longsheng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</title><author>Xiao, Qizhen ; Dai, Binxiang ; Xu, Bingxiang ; Bao, Longsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bifurcations</topic><topic>Constant-yield harvesting</topic><topic>Differential equations</topic><topic>Geometry analysis</topic><topic>Harvesting</topic><topic>Homoclinic bifurcation</topic><topic>Impulsive control</topic><topic>Kolmogorov model</topic><topic>Mathematical models</topic><topic>Predators</topic><topic>Resource management</topic><topic>Stockings</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Dai, Binxiang</creatorcontrib><creatorcontrib>Xu, Bingxiang</creatorcontrib><creatorcontrib>Bao, Longsheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Qizhen</au><au>Dai, Binxiang</au><au>Xu, Bingxiang</au><au>Bao, Longsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>26</volume><spage>263</spage><epage>273</epage><pages>263-273</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2015.05.012</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2015-12, Vol.26, p.263-273
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_miscellaneous_1762073833
source Elsevier ScienceDirect Journals
subjects Bifurcations
Constant-yield harvesting
Differential equations
Geometry analysis
Harvesting
Homoclinic bifurcation
Impulsive control
Kolmogorov model
Mathematical models
Predators
Resource management
Stockings
Strategy
title Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoclinic%20bifurcation%20for%20a%20general%20state-dependent%20Kolmogorov%20type%20predator%E2%80%93prey%20model%20with%20harvesting&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Xiao,%20Qizhen&rft.date=2015-12-01&rft.volume=26&rft.spage=263&rft.epage=273&rft.pages=263-273&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2015.05.012&rft_dat=%3Cproquest_cross%3E1762073833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762073833&rft_id=info:pmid/&rft_els_id=S1468121815000681&rfr_iscdi=true