Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting
In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2015-12, Vol.26, p.263-273 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 273 |
---|---|
container_issue | |
container_start_page | 263 |
container_title | Nonlinear analysis: real world applications |
container_volume | 26 |
creator | Xiao, Qizhen Dai, Binxiang Xu, Bingxiang Bao, Longsheng |
description | In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts. |
doi_str_mv | 10.1016/j.nonrwa.2015.05.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762073833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121815000681</els_id><sourcerecordid>1762073833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</originalsourceid><addsrcrecordid>eNp9UMtOIzEQHK1AWgj7B3vwcS8T3HbicS4rIcRLIHFhz5anpyc4mrEH2wnKbf-BP-RLMApnpJK6pK6qVldV_QY-Bw7qfDP3wcdXOxcclnNeAOJHdQK60fWygdVR4QulaxCgf1anKW04hwYknFSb2zAGHJx3yFrXbyPa7IJnfYjMsjV5inZgKdtMdUcT-Y58ZvdhGMM6xLBjeT8RmyJ1Nof4_v-t0D0bQ0cDe3X5mT3buKOUnV-fVce9HRL9-pqz6t_11dPlbf3weHN3efFQo5SrXAuBne0lLXjbKWm1bUAprdoehdIWe1ypFrGsSLcc-kYgSoVFwzlf8pbLWfXnkDvF8LItt83oEtIwWE9hmww0SvBGaimLdHGQYgwpRerNFN1o494AN5_Vmo05VGs-qzW8AESx_T3YqLyxcxRNQkceqXORMJsuuO8DPgDTCIgY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762073833</pqid></control><display><type>article</type><title>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</title><source>Elsevier ScienceDirect Journals</source><creator>Xiao, Qizhen ; Dai, Binxiang ; Xu, Bingxiang ; Bao, Longsheng</creator><creatorcontrib>Xiao, Qizhen ; Dai, Binxiang ; Xu, Bingxiang ; Bao, Longsheng</creatorcontrib><description>In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2015.05.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bifurcations ; Constant-yield harvesting ; Differential equations ; Geometry analysis ; Harvesting ; Homoclinic bifurcation ; Impulsive control ; Kolmogorov model ; Mathematical models ; Predators ; Resource management ; Stockings ; Strategy</subject><ispartof>Nonlinear analysis: real world applications, 2015-12, Vol.26, p.263-273</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</citedby><cites>FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nonrwa.2015.05.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Dai, Binxiang</creatorcontrib><creatorcontrib>Xu, Bingxiang</creatorcontrib><creatorcontrib>Bao, Longsheng</creatorcontrib><title>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</title><title>Nonlinear analysis: real world applications</title><description>In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.</description><subject>Bifurcations</subject><subject>Constant-yield harvesting</subject><subject>Differential equations</subject><subject>Geometry analysis</subject><subject>Harvesting</subject><subject>Homoclinic bifurcation</subject><subject>Impulsive control</subject><subject>Kolmogorov model</subject><subject>Mathematical models</subject><subject>Predators</subject><subject>Resource management</subject><subject>Stockings</subject><subject>Strategy</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOIzEQHK1AWgj7B3vwcS8T3HbicS4rIcRLIHFhz5anpyc4mrEH2wnKbf-BP-RLMApnpJK6pK6qVldV_QY-Bw7qfDP3wcdXOxcclnNeAOJHdQK60fWygdVR4QulaxCgf1anKW04hwYknFSb2zAGHJx3yFrXbyPa7IJnfYjMsjV5inZgKdtMdUcT-Y58ZvdhGMM6xLBjeT8RmyJ1Nof4_v-t0D0bQ0cDe3X5mT3buKOUnV-fVce9HRL9-pqz6t_11dPlbf3weHN3efFQo5SrXAuBne0lLXjbKWm1bUAprdoehdIWe1ypFrGsSLcc-kYgSoVFwzlf8pbLWfXnkDvF8LItt83oEtIwWE9hmww0SvBGaimLdHGQYgwpRerNFN1o494AN5_Vmo05VGs-qzW8AESx_T3YqLyxcxRNQkceqXORMJsuuO8DPgDTCIgY</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Xiao, Qizhen</creator><creator>Dai, Binxiang</creator><creator>Xu, Bingxiang</creator><creator>Bao, Longsheng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</title><author>Xiao, Qizhen ; Dai, Binxiang ; Xu, Bingxiang ; Bao, Longsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-22cdaf3e40bd63a8a716686bfc268acfc96bccd63e8b01f72cc36c16600050b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bifurcations</topic><topic>Constant-yield harvesting</topic><topic>Differential equations</topic><topic>Geometry analysis</topic><topic>Harvesting</topic><topic>Homoclinic bifurcation</topic><topic>Impulsive control</topic><topic>Kolmogorov model</topic><topic>Mathematical models</topic><topic>Predators</topic><topic>Resource management</topic><topic>Stockings</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Qizhen</creatorcontrib><creatorcontrib>Dai, Binxiang</creatorcontrib><creatorcontrib>Xu, Bingxiang</creatorcontrib><creatorcontrib>Bao, Longsheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Qizhen</au><au>Dai, Binxiang</au><au>Xu, Bingxiang</au><au>Bao, Longsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>26</volume><spage>263</spage><epage>273</epage><pages>263-273</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, a general Kolmogorov type predator–prey model is considered. Together with a constant-yield predator harvesting, the state dependent feedback control strategies which take into account the impulsive harvesting on predators as well as the impulsive stocking on the prey are incorporated in the process of population interactions. We firstly study the existence of an order-1 homoclinic cycle for the system. It is shown that an order-1 positive periodic solution bifurcates from the order-1 homoclinic cycle through a homoclinic bifurcation as the impulsive predator harvesting rate crosses some critical value. The uniqueness and stability of the order-1 positive periodic solution are derived by applying the geometry theory of differential equations and the method of successor function. Finally, some numerical examples are provided to illustrate the main results. These results indicate that careful management of resources and harvesting policies is required in the applied conservation and renewable resource contexts.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2015.05.012</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2015-12, Vol.26, p.263-273 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762073833 |
source | Elsevier ScienceDirect Journals |
subjects | Bifurcations Constant-yield harvesting Differential equations Geometry analysis Harvesting Homoclinic bifurcation Impulsive control Kolmogorov model Mathematical models Predators Resource management Stockings Strategy |
title | Homoclinic bifurcation for a general state-dependent Kolmogorov type predator–prey model with harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homoclinic%20bifurcation%20for%20a%20general%20state-dependent%20Kolmogorov%20type%20predator%E2%80%93prey%20model%20with%20harvesting&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Xiao,%20Qizhen&rft.date=2015-12-01&rft.volume=26&rft.spage=263&rft.epage=273&rft.pages=263-273&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2015.05.012&rft_dat=%3Cproquest_cross%3E1762073833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762073833&rft_id=info:pmid/&rft_els_id=S1468121815000681&rfr_iscdi=true |