Folding of a β‑Sheet Miniprotein: Probability Fluxes, Streamlines, and the Potential for the Driving Force
In this work we continue the study of the first-passage folding of an antiparallel β-sheet miniprotein (beta3s) that was initiated in the previous work [Kalgin et al. J. Phys. Chem. B, 2014, 118, 4287 ]. We consider a larger ensemble of folding trajectories, which allows us to gain a closer insight...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2015-01, Vol.119 (4), p.1380-1387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1387 |
---|---|
container_issue | 4 |
container_start_page | 1380 |
container_title | The journal of physical chemistry. B |
container_volume | 119 |
creator | Kalgin, Igor V Chekmarev, Sergei F |
description | In this work we continue the study of the first-passage folding of an antiparallel β-sheet miniprotein (beta3s) that was initiated in the previous work [Kalgin et al. J. Phys. Chem. B, 2014, 118, 4287 ]. We consider a larger ensemble of folding trajectories, which allows us to gain a closer insight into the folding dynamics. In particular, we calculate the potential for the driving force of folding in a reduced space of collective variables. The potential has two components. One component (Φ) is responsible for the source and sink of the folding flow, which are formed, respectively, in the regions of the unfolded and native states of the protein, and the other (Ψ) accounts for the flow vorticity inherently generated at the sides of the reaction channel and provides the canalization of the folding flow between the source and sink. We show that both components obey Poisson’s equations with the corresponding source/sink terms. The resulting components have a very simple form: the Φ-surface consists of two well-defined peaks of different signs, which correspond, respectively, to the source and sink of the folding flow, and the Ψ-surface consists of two ridges of different signs that connect the source and sink of the flow. |
doi_str_mv | 10.1021/jp5112795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762073145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652425741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-93ea441ba56b2c36d5e22d6d9934ea00c9fb7e3b3e876e8dcc94ac90c7316bfe3</originalsourceid><addsrcrecordid>eNqFkUtKA0EQhhtRND4WXkB6IygY7fdk3Ek0KkQUouuhp6fGdJiZjt0zYnZewat4EA_hSZyY6EpwUdSDr36ovxDapeSYEkZPJlNJKYtiuYI6VDLSbSNaXdaKErWBNkOYEMIk66l1tMGkFEIJ1UHlwBWZrR6xy7HGH--fr2-jMUCNb2xlp97VYKtTfOddqlNb2HqGB0XzAuEIj2oPuixsNW90leF6DPiuXahqqwucO_89Off2ea4_cN7ANlrLdRFgZ5m30MPg4r5_1R3eXl73z4ZdzUWv7sYctBA01VKlzHCVSWAsU1kccwGaEBPnaQQ85dCLFPQyY2KhTUxMxKlKc-Bb6GCh217w1ECok9IGA0WhK3BNSGikWoc4FfJ_VEkmmIwEbdHDBWq8C8FDnky9LbWfJZQk80ckv49o2b2lbJOWkP2SP863wP4C0CYkE9f4qjXkD6Ev86CQMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652425741</pqid></control><display><type>article</type><title>Folding of a β‑Sheet Miniprotein: Probability Fluxes, Streamlines, and the Potential for the Driving Force</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kalgin, Igor V ; Chekmarev, Sergei F</creator><creatorcontrib>Kalgin, Igor V ; Chekmarev, Sergei F</creatorcontrib><description>In this work we continue the study of the first-passage folding of an antiparallel β-sheet miniprotein (beta3s) that was initiated in the previous work [Kalgin et al. J. Phys. Chem. B, 2014, 118, 4287 ]. We consider a larger ensemble of folding trajectories, which allows us to gain a closer insight into the folding dynamics. In particular, we calculate the potential for the driving force of folding in a reduced space of collective variables. The potential has two components. One component (Φ) is responsible for the source and sink of the folding flow, which are formed, respectively, in the regions of the unfolded and native states of the protein, and the other (Ψ) accounts for the flow vorticity inherently generated at the sides of the reaction channel and provides the canalization of the folding flow between the source and sink. We show that both components obey Poisson’s equations with the corresponding source/sink terms. The resulting components have a very simple form: the Φ-surface consists of two well-defined peaks of different signs, which correspond, respectively, to the source and sink of the folding flow, and the Ψ-surface consists of two ridges of different signs that connect the source and sink of the flow.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp5112795</identifier><identifier>PMID: 25544646</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Channels ; Fluxes ; Folding ; Gain ; Mathematical analysis ; Physical chemistry ; Poisson equation ; Protein Folding ; Protein Structure, Secondary ; Proteins - chemistry ; Ridges</subject><ispartof>The journal of physical chemistry. B, 2015-01, Vol.119 (4), p.1380-1387</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-93ea441ba56b2c36d5e22d6d9934ea00c9fb7e3b3e876e8dcc94ac90c7316bfe3</citedby><cites>FETCH-LOGICAL-a348t-93ea441ba56b2c36d5e22d6d9934ea00c9fb7e3b3e876e8dcc94ac90c7316bfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp5112795$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp5112795$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25544646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalgin, Igor V</creatorcontrib><creatorcontrib>Chekmarev, Sergei F</creatorcontrib><title>Folding of a β‑Sheet Miniprotein: Probability Fluxes, Streamlines, and the Potential for the Driving Force</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>In this work we continue the study of the first-passage folding of an antiparallel β-sheet miniprotein (beta3s) that was initiated in the previous work [Kalgin et al. J. Phys. Chem. B, 2014, 118, 4287 ]. We consider a larger ensemble of folding trajectories, which allows us to gain a closer insight into the folding dynamics. In particular, we calculate the potential for the driving force of folding in a reduced space of collective variables. The potential has two components. One component (Φ) is responsible for the source and sink of the folding flow, which are formed, respectively, in the regions of the unfolded and native states of the protein, and the other (Ψ) accounts for the flow vorticity inherently generated at the sides of the reaction channel and provides the canalization of the folding flow between the source and sink. We show that both components obey Poisson’s equations with the corresponding source/sink terms. The resulting components have a very simple form: the Φ-surface consists of two well-defined peaks of different signs, which correspond, respectively, to the source and sink of the folding flow, and the Ψ-surface consists of two ridges of different signs that connect the source and sink of the flow.</description><subject>Channels</subject><subject>Fluxes</subject><subject>Folding</subject><subject>Gain</subject><subject>Mathematical analysis</subject><subject>Physical chemistry</subject><subject>Poisson equation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><subject>Ridges</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtKA0EQhhtRND4WXkB6IygY7fdk3Ek0KkQUouuhp6fGdJiZjt0zYnZewat4EA_hSZyY6EpwUdSDr36ovxDapeSYEkZPJlNJKYtiuYI6VDLSbSNaXdaKErWBNkOYEMIk66l1tMGkFEIJ1UHlwBWZrR6xy7HGH--fr2-jMUCNb2xlp97VYKtTfOddqlNb2HqGB0XzAuEIj2oPuixsNW90leF6DPiuXahqqwucO_89Off2ea4_cN7ANlrLdRFgZ5m30MPg4r5_1R3eXl73z4ZdzUWv7sYctBA01VKlzHCVSWAsU1kccwGaEBPnaQQ85dCLFPQyY2KhTUxMxKlKc-Bb6GCh217w1ECok9IGA0WhK3BNSGikWoc4FfJ_VEkmmIwEbdHDBWq8C8FDnky9LbWfJZQk80ckv49o2b2lbJOWkP2SP863wP4C0CYkE9f4qjXkD6Ev86CQMg</recordid><startdate>20150129</startdate><enddate>20150129</enddate><creator>Kalgin, Igor V</creator><creator>Chekmarev, Sergei F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150129</creationdate><title>Folding of a β‑Sheet Miniprotein: Probability Fluxes, Streamlines, and the Potential for the Driving Force</title><author>Kalgin, Igor V ; Chekmarev, Sergei F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-93ea441ba56b2c36d5e22d6d9934ea00c9fb7e3b3e876e8dcc94ac90c7316bfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Channels</topic><topic>Fluxes</topic><topic>Folding</topic><topic>Gain</topic><topic>Mathematical analysis</topic><topic>Physical chemistry</topic><topic>Poisson equation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><topic>Ridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalgin, Igor V</creatorcontrib><creatorcontrib>Chekmarev, Sergei F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalgin, Igor V</au><au>Chekmarev, Sergei F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding of a β‑Sheet Miniprotein: Probability Fluxes, Streamlines, and the Potential for the Driving Force</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2015-01-29</date><risdate>2015</risdate><volume>119</volume><issue>4</issue><spage>1380</spage><epage>1387</epage><pages>1380-1387</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>In this work we continue the study of the first-passage folding of an antiparallel β-sheet miniprotein (beta3s) that was initiated in the previous work [Kalgin et al. J. Phys. Chem. B, 2014, 118, 4287 ]. We consider a larger ensemble of folding trajectories, which allows us to gain a closer insight into the folding dynamics. In particular, we calculate the potential for the driving force of folding in a reduced space of collective variables. The potential has two components. One component (Φ) is responsible for the source and sink of the folding flow, which are formed, respectively, in the regions of the unfolded and native states of the protein, and the other (Ψ) accounts for the flow vorticity inherently generated at the sides of the reaction channel and provides the canalization of the folding flow between the source and sink. We show that both components obey Poisson’s equations with the corresponding source/sink terms. The resulting components have a very simple form: the Φ-surface consists of two well-defined peaks of different signs, which correspond, respectively, to the source and sink of the folding flow, and the Ψ-surface consists of two ridges of different signs that connect the source and sink of the flow.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25544646</pmid><doi>10.1021/jp5112795</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2015-01, Vol.119 (4), p.1380-1387 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762073145 |
source | MEDLINE; ACS Publications |
subjects | Channels Fluxes Folding Gain Mathematical analysis Physical chemistry Poisson equation Protein Folding Protein Structure, Secondary Proteins - chemistry Ridges |
title | Folding of a β‑Sheet Miniprotein: Probability Fluxes, Streamlines, and the Potential for the Driving Force |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A41%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20of%20a%20%CE%B2%E2%80%91Sheet%20Miniprotein:%20Probability%20Fluxes,%20Streamlines,%20and%20the%20Potential%20for%20the%20Driving%20Force&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Kalgin,%20Igor%20V&rft.date=2015-01-29&rft.volume=119&rft.issue=4&rft.spage=1380&rft.epage=1387&rft.pages=1380-1387&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp5112795&rft_dat=%3Cproquest_cross%3E1652425741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1652425741&rft_id=info:pmid/25544646&rfr_iscdi=true |