Monitoring change point for diffusion parameter based on discretely observed sample from stochastic differential equation models
Stochastic differential equation (SDE) models are useful in describing complex dynamical systems in science and engineering. In this study, we consider a monitoring procedure for an early detection of dispersion parameter change in SDE models. The proposed scheme provides a useful diagnostic analysi...
Gespeichert in:
Veröffentlicht in: | Applied stochastic models in business and industry 2015-09, Vol.31 (5), p.609-625 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 625 |
---|---|
container_issue | 5 |
container_start_page | 609 |
container_title | Applied stochastic models in business and industry |
container_volume | 31 |
creator | Lee, Sangyeol Guo, Meihui |
description | Stochastic differential equation (SDE) models are useful in describing complex dynamical systems in science and engineering. In this study, we consider a monitoring procedure for an early detection of dispersion parameter change in SDE models. The proposed scheme provides a useful diagnostic analysis for phase I retrospective study and develops a flexible and effective control chart for phase II prospective monitoring. A standardized control chart is constructed, and a bootstrap method is used to estimate the mean and variance of the monitoring statistic. The control limit is obtained as an upper percentile of the maximum value of a standard Wiener process. The proposed procedure appears to have a manageable computational complexity for online implementation and also to be effective in detecting changes. We also investigate the performance of the exponentially weighted mean squared control charts for the continuous SDE processes. A simulation method is used to study the empirical sizes and the average run length characteristics of the proposed scheme, which also demonstrates the effectiveness of our method. Finally, we provide an empirical example for illustration. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/asmb.2064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762073072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762073072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3404-becbcec6c0a111f4835b2b51f52c36da75ad86b1bd17639122d25d0f0b8e55793</originalsourceid><addsrcrecordid>eNp1kDtPHDEUhUcRkQIkRf6BSygG_JzZLQHxUoAUIUqUxvLjmhhmxrO-XmC7_PTMsoiOyldH3_kkn6r6yugBo5QfGuztAaeN_FBtM8WbWlKutl5uWbM5lZ-qHcR7ShmTLduu_l2nIZaU43BH3F8z3AEZUxwKCSkTH0NYYkwDGU02PRTIxBoET6bIR3R5iroVSRYhP04xmn7sgISceoIlTUIs0b14IMNQoukILJamrJ198tDh5-pjMB3Cl9d3t_p5dnp7clFffT-_PDm6qp2QVNYWnHXgGkcNYyzImVCWW8WC4k403rTK-FljmfWsbcScce658jRQOwOl2rnYrfY23jGnxRKw6H76AHSdGSAtUU81TltBWz6h-xvU5YSYIegxx97klWZUr1fW65X1euWJPdywT7GD1fugPvpxffzaqDeNiAWe3xomP-imFa3Sv27O9ez3rVTfxB8txH_e9ZFb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762073072</pqid></control><display><type>article</type><title>Monitoring change point for diffusion parameter based on discretely observed sample from stochastic differential equation models</title><source>Wiley Online Library Journals</source><source>Business Source Complete</source><creator>Lee, Sangyeol ; Guo, Meihui</creator><creatorcontrib>Lee, Sangyeol ; Guo, Meihui</creatorcontrib><description>Stochastic differential equation (SDE) models are useful in describing complex dynamical systems in science and engineering. In this study, we consider a monitoring procedure for an early detection of dispersion parameter change in SDE models. The proposed scheme provides a useful diagnostic analysis for phase I retrospective study and develops a flexible and effective control chart for phase II prospective monitoring. A standardized control chart is constructed, and a bootstrap method is used to estimate the mean and variance of the monitoring statistic. The control limit is obtained as an upper percentile of the maximum value of a standard Wiener process. The proposed procedure appears to have a manageable computational complexity for online implementation and also to be effective in detecting changes. We also investigate the performance of the exponentially weighted mean squared control charts for the continuous SDE processes. A simulation method is used to study the empirical sizes and the average run length characteristics of the proposed scheme, which also demonstrates the effectiveness of our method. Finally, we provide an empirical example for illustration. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1524-1904</identifier><identifier>EISSN: 1526-4025</identifier><identifier>DOI: 10.1002/asmb.2064</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Control charts ; Differential equations ; discretely observed sample ; Dynamical systems ; Empirical analysis ; EWMS control chart ; hypothesis testing ; Mathematical models ; model validation ; Monitoring ; standardized control chart ; Statistical methods ; Stochasticity</subject><ispartof>Applied stochastic models in business and industry, 2015-09, Vol.31 (5), p.609-625</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3404-becbcec6c0a111f4835b2b51f52c36da75ad86b1bd17639122d25d0f0b8e55793</citedby><cites>FETCH-LOGICAL-c3404-becbcec6c0a111f4835b2b51f52c36da75ad86b1bd17639122d25d0f0b8e55793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasmb.2064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasmb.2064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lee, Sangyeol</creatorcontrib><creatorcontrib>Guo, Meihui</creatorcontrib><title>Monitoring change point for diffusion parameter based on discretely observed sample from stochastic differential equation models</title><title>Applied stochastic models in business and industry</title><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><description>Stochastic differential equation (SDE) models are useful in describing complex dynamical systems in science and engineering. In this study, we consider a monitoring procedure for an early detection of dispersion parameter change in SDE models. The proposed scheme provides a useful diagnostic analysis for phase I retrospective study and develops a flexible and effective control chart for phase II prospective monitoring. A standardized control chart is constructed, and a bootstrap method is used to estimate the mean and variance of the monitoring statistic. The control limit is obtained as an upper percentile of the maximum value of a standard Wiener process. The proposed procedure appears to have a manageable computational complexity for online implementation and also to be effective in detecting changes. We also investigate the performance of the exponentially weighted mean squared control charts for the continuous SDE processes. A simulation method is used to study the empirical sizes and the average run length characteristics of the proposed scheme, which also demonstrates the effectiveness of our method. Finally, we provide an empirical example for illustration. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Control charts</subject><subject>Differential equations</subject><subject>discretely observed sample</subject><subject>Dynamical systems</subject><subject>Empirical analysis</subject><subject>EWMS control chart</subject><subject>hypothesis testing</subject><subject>Mathematical models</subject><subject>model validation</subject><subject>Monitoring</subject><subject>standardized control chart</subject><subject>Statistical methods</subject><subject>Stochasticity</subject><issn>1524-1904</issn><issn>1526-4025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPHDEUhUcRkQIkRf6BSygG_JzZLQHxUoAUIUqUxvLjmhhmxrO-XmC7_PTMsoiOyldH3_kkn6r6yugBo5QfGuztAaeN_FBtM8WbWlKutl5uWbM5lZ-qHcR7ShmTLduu_l2nIZaU43BH3F8z3AEZUxwKCSkTH0NYYkwDGU02PRTIxBoET6bIR3R5iroVSRYhP04xmn7sgISceoIlTUIs0b14IMNQoukILJamrJ198tDh5-pjMB3Cl9d3t_p5dnp7clFffT-_PDm6qp2QVNYWnHXgGkcNYyzImVCWW8WC4k403rTK-FljmfWsbcScce658jRQOwOl2rnYrfY23jGnxRKw6H76AHSdGSAtUU81TltBWz6h-xvU5YSYIegxx97klWZUr1fW65X1euWJPdywT7GD1fugPvpxffzaqDeNiAWe3xomP-imFa3Sv27O9ez3rVTfxB8txH_e9ZFb</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Lee, Sangyeol</creator><creator>Guo, Meihui</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TA</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201509</creationdate><title>Monitoring change point for diffusion parameter based on discretely observed sample from stochastic differential equation models</title><author>Lee, Sangyeol ; Guo, Meihui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3404-becbcec6c0a111f4835b2b51f52c36da75ad86b1bd17639122d25d0f0b8e55793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Control charts</topic><topic>Differential equations</topic><topic>discretely observed sample</topic><topic>Dynamical systems</topic><topic>Empirical analysis</topic><topic>EWMS control chart</topic><topic>hypothesis testing</topic><topic>Mathematical models</topic><topic>model validation</topic><topic>Monitoring</topic><topic>standardized control chart</topic><topic>Statistical methods</topic><topic>Stochasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangyeol</creatorcontrib><creatorcontrib>Guo, Meihui</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Materials Business File</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied stochastic models in business and industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sangyeol</au><au>Guo, Meihui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring change point for diffusion parameter based on discretely observed sample from stochastic differential equation models</atitle><jtitle>Applied stochastic models in business and industry</jtitle><addtitle>Appl. Stochastic Models Bus. Ind</addtitle><date>2015-09</date><risdate>2015</risdate><volume>31</volume><issue>5</issue><spage>609</spage><epage>625</epage><pages>609-625</pages><issn>1524-1904</issn><eissn>1526-4025</eissn><abstract>Stochastic differential equation (SDE) models are useful in describing complex dynamical systems in science and engineering. In this study, we consider a monitoring procedure for an early detection of dispersion parameter change in SDE models. The proposed scheme provides a useful diagnostic analysis for phase I retrospective study and develops a flexible and effective control chart for phase II prospective monitoring. A standardized control chart is constructed, and a bootstrap method is used to estimate the mean and variance of the monitoring statistic. The control limit is obtained as an upper percentile of the maximum value of a standard Wiener process. The proposed procedure appears to have a manageable computational complexity for online implementation and also to be effective in detecting changes. We also investigate the performance of the exponentially weighted mean squared control charts for the continuous SDE processes. A simulation method is used to study the empirical sizes and the average run length characteristics of the proposed scheme, which also demonstrates the effectiveness of our method. Finally, we provide an empirical example for illustration. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asmb.2064</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-1904 |
ispartof | Applied stochastic models in business and industry, 2015-09, Vol.31 (5), p.609-625 |
issn | 1524-1904 1526-4025 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762073072 |
source | Wiley Online Library Journals; Business Source Complete |
subjects | Control charts Differential equations discretely observed sample Dynamical systems Empirical analysis EWMS control chart hypothesis testing Mathematical models model validation Monitoring standardized control chart Statistical methods Stochasticity |
title | Monitoring change point for diffusion parameter based on discretely observed sample from stochastic differential equation models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20change%20point%20for%20diffusion%20parameter%20based%20on%20discretely%20observed%20sample%20from%20stochastic%20differential%20equation%20models&rft.jtitle=Applied%20stochastic%20models%20in%20business%20and%20industry&rft.au=Lee,%20Sangyeol&rft.date=2015-09&rft.volume=31&rft.issue=5&rft.spage=609&rft.epage=625&rft.pages=609-625&rft.issn=1524-1904&rft.eissn=1526-4025&rft_id=info:doi/10.1002/asmb.2064&rft_dat=%3Cproquest_cross%3E1762073072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762073072&rft_id=info:pmid/&rfr_iscdi=true |