Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere
The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inho...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2015-09, Vol.120 (17), p.8828-8840 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8840 |
---|---|
container_issue | 17 |
container_start_page | 8828 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 120 |
creator | Chunchuzov, I. Kulichkov, S. Perepelkin, V. Popov, O. Firstov, P. Assink, J. D. Marchetti, E. |
description | The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30–52 km) and MLT (90–140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine‐scale wind‐layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90–102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine‐scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a −3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.
Key Points
New probing method is described
Wind velocity fluctuations are retrieved in the middle atmosphere
Vertical wave number spectra are obtained |
doi_str_mv | 10.1002/2015JD023276 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762072770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722169585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5191-4aacbbe6c398d14c8592d079a8dc651ed56dd583ded54b0c238f74e3e5e599f93</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhSNEJarSHQ9giQ2LBvwTx_YStTBQpkXir91Zjn1DUzLxYDsMeQ2eGKczHSEWCG98dfydc23fonhC8HOCMX1BMeHnZ5gyKuoHxSEltSqlUvXDfS2uHxXHMd7ivCRmFa8Oi18f0-gm5FuUbgBtusGhH9B726Wp7M0EARyKKYw2jQFQN9xhWTDJx_VNPj5BK4j72mR_7zcQZi6sdjpqJjTGbviaA9pgoh8ztg6-maVda5Pu6cfFQWv6CMe7_aj4_PrVp9M35fL94u3py2VpOVGkrIyxTQO1ZUo6UlnJFXVYKCOdrTkBx2vnuGQuV1WDLWWyFRUw4MCVahU7Kp5tc_NNvo8Qk1510ULfmwH8GDURNcWCCoH_A6XzH3PJM_r0L_TWj2HID8kUkUxhxufAky1lg48xQKvXoVuZMGmC9TxO_ec4M862-KbrYfonq88XH844rQjJrnLr6mKCn3uXCd90LZjg-upyoS8v3l1d8-UXLdhvZ6GygA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718390350</pqid></control><display><type>article</type><title>Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere</title><source>Wiley-Blackwell Journals</source><source>Wiley Free Archive</source><source>Alma/SFX Local Collection</source><creator>Chunchuzov, I. ; Kulichkov, S. ; Perepelkin, V. ; Popov, O. ; Firstov, P. ; Assink, J. D. ; Marchetti, E.</creator><creatorcontrib>Chunchuzov, I. ; Kulichkov, S. ; Perepelkin, V. ; Popov, O. ; Firstov, P. ; Assink, J. D. ; Marchetti, E.</creatorcontrib><description>The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30–52 km) and MLT (90–140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine‐scale wind‐layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90–102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine‐scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a −3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.
Key Points
New probing method is described
Wind velocity fluctuations are retrieved in the middle atmosphere
Vertical wave number spectra are obtained</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2015JD023276</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>anisotropic wind velocity fluctuations ; Atmosphere ; Atmospheres ; Explosions ; fine-scale layered structure ; Fluctuation ; Fluctuations ; Geophysics ; Gravitational waves ; Gravity waves ; Infrasound ; internal gravity waves ; lower thermosphere ; Ozone ; Remote sensing ; Spectra ; Stratosphere ; Upper atmosphere ; Velocity ; Volcanoes ; Wavelengths ; Weather forecasting ; Wind speed ; Wind velocity</subject><ispartof>Journal of geophysical research. Atmospheres, 2015-09, Vol.120 (17), p.8828-8840</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5191-4aacbbe6c398d14c8592d079a8dc651ed56dd583ded54b0c238f74e3e5e599f93</citedby><cites>FETCH-LOGICAL-c5191-4aacbbe6c398d14c8592d079a8dc651ed56dd583ded54b0c238f74e3e5e599f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JD023276$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JD023276$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids></links><search><creatorcontrib>Chunchuzov, I.</creatorcontrib><creatorcontrib>Kulichkov, S.</creatorcontrib><creatorcontrib>Perepelkin, V.</creatorcontrib><creatorcontrib>Popov, O.</creatorcontrib><creatorcontrib>Firstov, P.</creatorcontrib><creatorcontrib>Assink, J. D.</creatorcontrib><creatorcontrib>Marchetti, E.</creatorcontrib><title>Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30–52 km) and MLT (90–140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine‐scale wind‐layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90–102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine‐scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a −3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.
Key Points
New probing method is described
Wind velocity fluctuations are retrieved in the middle atmosphere
Vertical wave number spectra are obtained</description><subject>anisotropic wind velocity fluctuations</subject><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Explosions</subject><subject>fine-scale layered structure</subject><subject>Fluctuation</subject><subject>Fluctuations</subject><subject>Geophysics</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Infrasound</subject><subject>internal gravity waves</subject><subject>lower thermosphere</subject><subject>Ozone</subject><subject>Remote sensing</subject><subject>Spectra</subject><subject>Stratosphere</subject><subject>Upper atmosphere</subject><subject>Velocity</subject><subject>Volcanoes</subject><subject>Wavelengths</subject><subject>Weather forecasting</subject><subject>Wind speed</subject><subject>Wind velocity</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhSNEJarSHQ9giQ2LBvwTx_YStTBQpkXir91Zjn1DUzLxYDsMeQ2eGKczHSEWCG98dfydc23fonhC8HOCMX1BMeHnZ5gyKuoHxSEltSqlUvXDfS2uHxXHMd7ivCRmFa8Oi18f0-gm5FuUbgBtusGhH9B726Wp7M0EARyKKYw2jQFQN9xhWTDJx_VNPj5BK4j72mR_7zcQZi6sdjpqJjTGbviaA9pgoh8ztg6-maVda5Pu6cfFQWv6CMe7_aj4_PrVp9M35fL94u3py2VpOVGkrIyxTQO1ZUo6UlnJFXVYKCOdrTkBx2vnuGQuV1WDLWWyFRUw4MCVahU7Kp5tc_NNvo8Qk1510ULfmwH8GDURNcWCCoH_A6XzH3PJM_r0L_TWj2HID8kUkUxhxufAky1lg48xQKvXoVuZMGmC9TxO_ec4M862-KbrYfonq88XH844rQjJrnLr6mKCn3uXCd90LZjg-upyoS8v3l1d8-UXLdhvZ6GygA</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Chunchuzov, I.</creator><creator>Kulichkov, S.</creator><creator>Perepelkin, V.</creator><creator>Popov, O.</creator><creator>Firstov, P.</creator><creator>Assink, J. D.</creator><creator>Marchetti, E.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20150916</creationdate><title>Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere</title><author>Chunchuzov, I. ; Kulichkov, S. ; Perepelkin, V. ; Popov, O. ; Firstov, P. ; Assink, J. D. ; Marchetti, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5191-4aacbbe6c398d14c8592d079a8dc651ed56dd583ded54b0c238f74e3e5e599f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>anisotropic wind velocity fluctuations</topic><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Explosions</topic><topic>fine-scale layered structure</topic><topic>Fluctuation</topic><topic>Fluctuations</topic><topic>Geophysics</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Infrasound</topic><topic>internal gravity waves</topic><topic>lower thermosphere</topic><topic>Ozone</topic><topic>Remote sensing</topic><topic>Spectra</topic><topic>Stratosphere</topic><topic>Upper atmosphere</topic><topic>Velocity</topic><topic>Volcanoes</topic><topic>Wavelengths</topic><topic>Weather forecasting</topic><topic>Wind speed</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chunchuzov, I.</creatorcontrib><creatorcontrib>Kulichkov, S.</creatorcontrib><creatorcontrib>Perepelkin, V.</creatorcontrib><creatorcontrib>Popov, O.</creatorcontrib><creatorcontrib>Firstov, P.</creatorcontrib><creatorcontrib>Assink, J. D.</creatorcontrib><creatorcontrib>Marchetti, E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chunchuzov, I.</au><au>Kulichkov, S.</au><au>Perepelkin, V.</au><au>Popov, O.</au><au>Firstov, P.</au><au>Assink, J. D.</au><au>Marchetti, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>120</volume><issue>17</issue><spage>8828</spage><epage>8840</epage><pages>8828-8840</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The wind velocity structure in the upper stratosphere, mesosphere, and lower thermosphere (MLT) is studied with the recently developed method of infrasound probing of the atmosphere. The method is based on the effect of infrasound scattering from highly anisotropic wind velocity and temperature inhomogeneities in the middle and upper atmosphere. The scattered infrasound field propagates in the acoustic shadow zones, where it is detected by microbarometers. The vertical profiles of the wind velocity fluctuations in the upper stratosphere (30–52 km) and MLT (90–140 km) are retrieved from the waveforms and travel times of the infrasound signals generated by explosive sources such as volcanoes and surface explosions. The fine‐scale wind‐layered structure in these layers was poorly observed until present time by other remote sensing methods, including radars and satellites. It is found that the MLT atmospheric layer (90–102 km) can contain extremely high vertical gradients of the wind velocity, up to 10 m/s per 100 m. The effect of a fine‐scale wind velocity structure on the waveforms of infrasound signals is studied. The vertical wave number spectra of the retrieved wind velocity fluctuations are obtained for the upper stratosphere. Despite the difference in the locations of the explosive sources all the obtained spectra show the existence of high vertical wave number spectral tail with a −3 power law decay. The obtained spectral characteristics of the wind fluctuations are necessary for improvement of gravity wave drag parameterizations for numerical weather forecast.
Key Points
New probing method is described
Wind velocity fluctuations are retrieved in the middle atmosphere
Vertical wave number spectra are obtained</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JD023276</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2015-09, Vol.120 (17), p.8828-8840 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762072770 |
source | Wiley-Blackwell Journals; Wiley Free Archive; Alma/SFX Local Collection |
subjects | anisotropic wind velocity fluctuations Atmosphere Atmospheres Explosions fine-scale layered structure Fluctuation Fluctuations Geophysics Gravitational waves Gravity waves Infrasound internal gravity waves lower thermosphere Ozone Remote sensing Spectra Stratosphere Upper atmosphere Velocity Volcanoes Wavelengths Weather forecasting Wind speed Wind velocity |
title | Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T21%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20wind%20velocity-layered%20structure%20in%20the%20stratosphere,%20mesosphere,%20and%20lower%20thermosphere%20by%20using%20infrasound%20probing%20of%20the%20atmosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Chunchuzov,%20I.&rft.date=2015-09-16&rft.volume=120&rft.issue=17&rft.spage=8828&rft.epage=8840&rft.pages=8828-8840&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2015JD023276&rft_dat=%3Cproquest_cross%3E1722169585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718390350&rft_id=info:pmid/&rfr_iscdi=true |