Quantum entanglement of an entangled coherent state:Role of particle losses
We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2014-03, Vol.23 (3), p.142-146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 3 |
container_start_page | 142 |
container_title | Chinese physics B |
container_volume | 23 |
creator | 刘盼 冯晓敏 金光日 |
description | We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12. |
doi_str_mv | 10.1088/1674-1056/23/3/030310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762071516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49106276</cqvip_id><sourcerecordid>1762071516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</originalsourceid><addsrcrecordid>eNo9kEtOwzAQhi0EEqVwBKSwYxPisR0_lgjxkooQCNaWm4zboDza2FlwFc7CnbgCiVp1MZpfM_8_Gn2EXAK9Aap1BlKJFGguM8YznlFOOdAjMmM01ynXXByT2cFzSs5C-KJUAmV8Rl7eBtfGoUmwja5d1diMIul84trDqEyKbo39tAjRRfz7_XnvapxcG9fHqhh13YWA4ZyceFcHvNj3Ofl8uP-4e0oXr4_Pd7eLtODAYloqrYUHo6UQJZrCmGUu1FjoBfUCjCukZzlwA-g5Q628NIrnS196MUo-J9e7u5u-2w4Yom2qUGBduxa7IVhQklEFOcjRmu-sRT--2KO3m75qXP9tgdoJn53Q2AmNZdxyu8M35q72uXXXrrZVuzoEhQEqmZL8H1VSb1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762071516</pqid></control><display><type>article</type><title>Quantum entanglement of an entangled coherent state:Role of particle losses</title><source>IOP Publishing Journals</source><creator>刘盼 冯晓敏 金光日</creator><creatorcontrib>刘盼 冯晓敏 金光日</creatorcontrib><description>We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/23/3/030310</identifier><language>eng</language><subject>Brackets ; Coherence ; ECS ; Entanglement ; Infinity ; Optimization ; Photons ; Quantum mechanics ; Radicals ; 二氧化碳 ; 光子数 ; 损失 ; 粒子 ; 纠缠特性 ; 纠缠相干态 ; 量子纠缠</subject><ispartof>Chinese physics B, 2014-03, Vol.23 (3), p.142-146</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</citedby><cites>FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>刘盼 冯晓敏 金光日</creatorcontrib><title>Quantum entanglement of an entangled coherent state:Role of particle losses</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.</description><subject>Brackets</subject><subject>Coherence</subject><subject>ECS</subject><subject>Entanglement</subject><subject>Infinity</subject><subject>Optimization</subject><subject>Photons</subject><subject>Quantum mechanics</subject><subject>Radicals</subject><subject>二氧化碳</subject><subject>光子数</subject><subject>损失</subject><subject>粒子</subject><subject>纠缠特性</subject><subject>纠缠相干态</subject><subject>量子纠缠</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAQhi0EEqVwBKSwYxPisR0_lgjxkooQCNaWm4zboDza2FlwFc7CnbgCiVp1MZpfM_8_Gn2EXAK9Aap1BlKJFGguM8YznlFOOdAjMmM01ynXXByT2cFzSs5C-KJUAmV8Rl7eBtfGoUmwja5d1diMIul84trDqEyKbo39tAjRRfz7_XnvapxcG9fHqhh13YWA4ZyceFcHvNj3Ofl8uP-4e0oXr4_Pd7eLtODAYloqrYUHo6UQJZrCmGUu1FjoBfUCjCukZzlwA-g5Q628NIrnS196MUo-J9e7u5u-2w4Yom2qUGBduxa7IVhQklEFOcjRmu-sRT--2KO3m75qXP9tgdoJn53Q2AmNZdxyu8M35q72uXXXrrZVuzoEhQEqmZL8H1VSb1I</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>刘盼 冯晓敏 金光日</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Quantum entanglement of an entangled coherent state:Role of particle losses</title><author>刘盼 冯晓敏 金光日</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brackets</topic><topic>Coherence</topic><topic>ECS</topic><topic>Entanglement</topic><topic>Infinity</topic><topic>Optimization</topic><topic>Photons</topic><topic>Quantum mechanics</topic><topic>Radicals</topic><topic>二氧化碳</topic><topic>光子数</topic><topic>损失</topic><topic>粒子</topic><topic>纠缠特性</topic><topic>纠缠相干态</topic><topic>量子纠缠</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘盼 冯晓敏 金光日</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘盼 冯晓敏 金光日</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum entanglement of an entangled coherent state:Role of particle losses</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>23</volume><issue>3</issue><spage>142</spage><epage>146</epage><pages>142-146</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.</abstract><doi>10.1088/1674-1056/23/3/030310</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-1056 |
ispartof | Chinese physics B, 2014-03, Vol.23 (3), p.142-146 |
issn | 1674-1056 2058-3834 1741-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762071516 |
source | IOP Publishing Journals |
subjects | Brackets Coherence ECS Entanglement Infinity Optimization Photons Quantum mechanics Radicals 二氧化碳 光子数 损失 粒子 纠缠特性 纠缠相干态 量子纠缠 |
title | Quantum entanglement of an entangled coherent state:Role of particle losses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20entanglement%20of%20an%20entangled%20coherent%20state%EF%BC%9ARole%20of%20particle%20losses&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%88%98%E7%9B%BC%20%E5%86%AF%E6%99%93%E6%95%8F%20%E9%87%91%E5%85%89%E6%97%A5&rft.date=2014-03-01&rft.volume=23&rft.issue=3&rft.spage=142&rft.epage=146&rft.pages=142-146&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/23/3/030310&rft_dat=%3Cproquest_cross%3E1762071516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762071516&rft_id=info:pmid/&rft_cqvip_id=49106276&rfr_iscdi=true |