Quantum entanglement of an entangled coherent state:Role of particle losses

We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2014-03, Vol.23 (3), p.142-146
1. Verfasser: 刘盼 冯晓敏 金光日
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 3
container_start_page 142
container_title Chinese physics B
container_volume 23
creator 刘盼 冯晓敏 金光日
description We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.
doi_str_mv 10.1088/1674-1056/23/3/030310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762071516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49106276</cqvip_id><sourcerecordid>1762071516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</originalsourceid><addsrcrecordid>eNo9kEtOwzAQhi0EEqVwBKSwYxPisR0_lgjxkooQCNaWm4zboDza2FlwFc7CnbgCiVp1MZpfM_8_Gn2EXAK9Aap1BlKJFGguM8YznlFOOdAjMmM01ynXXByT2cFzSs5C-KJUAmV8Rl7eBtfGoUmwja5d1diMIul84trDqEyKbo39tAjRRfz7_XnvapxcG9fHqhh13YWA4ZyceFcHvNj3Ofl8uP-4e0oXr4_Pd7eLtODAYloqrYUHo6UQJZrCmGUu1FjoBfUCjCukZzlwA-g5Q628NIrnS196MUo-J9e7u5u-2w4Yom2qUGBduxa7IVhQklEFOcjRmu-sRT--2KO3m75qXP9tgdoJn53Q2AmNZdxyu8M35q72uXXXrrZVuzoEhQEqmZL8H1VSb1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762071516</pqid></control><display><type>article</type><title>Quantum entanglement of an entangled coherent state:Role of particle losses</title><source>IOP Publishing Journals</source><creator>刘盼 冯晓敏 金光日</creator><creatorcontrib>刘盼 冯晓敏 金光日</creatorcontrib><description>We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>EISSN: 1741-4199</identifier><identifier>DOI: 10.1088/1674-1056/23/3/030310</identifier><language>eng</language><subject>Brackets ; Coherence ; ECS ; Entanglement ; Infinity ; Optimization ; Photons ; Quantum mechanics ; Radicals ; 二氧化碳 ; 光子数 ; 损失 ; 粒子 ; 纠缠特性 ; 纠缠相干态 ; 量子纠缠</subject><ispartof>Chinese physics B, 2014-03, Vol.23 (3), p.142-146</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</citedby><cites>FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85823A/85823A.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>刘盼 冯晓敏 金光日</creatorcontrib><title>Quantum entanglement of an entangled coherent state:Role of particle losses</title><title>Chinese physics B</title><addtitle>Chinese Physics</addtitle><description>We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.</description><subject>Brackets</subject><subject>Coherence</subject><subject>ECS</subject><subject>Entanglement</subject><subject>Infinity</subject><subject>Optimization</subject><subject>Photons</subject><subject>Quantum mechanics</subject><subject>Radicals</subject><subject>二氧化碳</subject><subject>光子数</subject><subject>损失</subject><subject>粒子</subject><subject>纠缠特性</subject><subject>纠缠相干态</subject><subject>量子纠缠</subject><issn>1674-1056</issn><issn>2058-3834</issn><issn>1741-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAQhi0EEqVwBKSwYxPisR0_lgjxkooQCNaWm4zboDza2FlwFc7CnbgCiVp1MZpfM_8_Gn2EXAK9Aap1BlKJFGguM8YznlFOOdAjMmM01ynXXByT2cFzSs5C-KJUAmV8Rl7eBtfGoUmwja5d1diMIul84trDqEyKbo39tAjRRfz7_XnvapxcG9fHqhh13YWA4ZyceFcHvNj3Ofl8uP-4e0oXr4_Pd7eLtODAYloqrYUHo6UQJZrCmGUu1FjoBfUCjCukZzlwA-g5Q628NIrnS196MUo-J9e7u5u-2w4Yom2qUGBduxa7IVhQklEFOcjRmu-sRT--2KO3m75qXP9tgdoJn53Q2AmNZdxyu8M35q72uXXXrrZVuzoEhQEqmZL8H1VSb1I</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>刘盼 冯晓敏 金光日</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140301</creationdate><title>Quantum entanglement of an entangled coherent state:Role of particle losses</title><author>刘盼 冯晓敏 金光日</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-d7884f198644de9c99b547b54ef40f419ac6f251391ef32e87f69735bfdf4f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brackets</topic><topic>Coherence</topic><topic>ECS</topic><topic>Entanglement</topic><topic>Infinity</topic><topic>Optimization</topic><topic>Photons</topic><topic>Quantum mechanics</topic><topic>Radicals</topic><topic>二氧化碳</topic><topic>光子数</topic><topic>损失</topic><topic>粒子</topic><topic>纠缠特性</topic><topic>纠缠相干态</topic><topic>量子纠缠</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘盼 冯晓敏 金光日</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘盼 冯晓敏 金光日</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum entanglement of an entangled coherent state:Role of particle losses</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chinese Physics</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>23</volume><issue>3</issue><spage>142</spage><epage>146</epage><pages>142-146</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><eissn>1741-4199</eissn><abstract>We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12.</abstract><doi>10.1088/1674-1056/23/3/030310</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2014-03, Vol.23 (3), p.142-146
issn 1674-1056
2058-3834
1741-4199
language eng
recordid cdi_proquest_miscellaneous_1762071516
source IOP Publishing Journals
subjects Brackets
Coherence
ECS
Entanglement
Infinity
Optimization
Photons
Quantum mechanics
Radicals
二氧化碳
光子数
损失
粒子
纠缠特性
纠缠相干态
量子纠缠
title Quantum entanglement of an entangled coherent state:Role of particle losses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20entanglement%20of%20an%20entangled%20coherent%20state%EF%BC%9ARole%20of%20particle%20losses&rft.jtitle=Chinese%20physics%20B&rft.au=%E5%88%98%E7%9B%BC%20%E5%86%AF%E6%99%93%E6%95%8F%20%E9%87%91%E5%85%89%E6%97%A5&rft.date=2014-03-01&rft.volume=23&rft.issue=3&rft.spage=142&rft.epage=146&rft.pages=142-146&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/23/3/030310&rft_dat=%3Cproquest_cross%3E1762071516%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762071516&rft_id=info:pmid/&rft_cqvip_id=49106276&rfr_iscdi=true