Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation

Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2015-10, Vol.11 (39), p.7762-7768
Hauptverfasser: Gorczyca, Stephanie M, Chapman, Cole D, Robertson-Anderson, Rae M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7768
container_issue 39
container_start_page 7762
container_title Soft matter
container_volume 11
creator Gorczyca, Stephanie M
Chapman, Cole D
Robertson-Anderson, Rae M
description Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) of dextran (10, 500 kDa) that mimic cellular conditions. By tracking the center-of-mass and measuring the lengths of the major and minor axes of single DNA molecules, we characterize both DNA mobility reduction as well as crowding-induced conformational changes (from random spherical coils). We reveal novel topology-dependent conformations, with single ring molecules undergoing compaction to ordered spherical configurations ∼20% smaller than dilute random coils, while linear DNA elongates by ∼2-fold. Surprisingly, these highly different conformations result in nearly identical exponential mobility reduction dependent solely on crowder volume fraction Φ , revealing a universal critical crowding concentration of Φ c ≅ 2.3. Beyond Φ c DNA exhibits topology-independent conformational relaxation dynamics despite highly distinct topology-driven conformations. Our collective results reveal that topology-dependent conformational changes, unique to crowded environments, enable DNA to overcome the classically expected mobility reduction that high-viscosity crowded environments impose. Such coupled universal dynamics suggest a mechanism for DNA to maintain sufficient mobility required for wide-ranging biological processes despite severe cellular crowding. Universal scaling of crowding-induced DNA mobility is coupled with entropically-driven compaction of rings and elongation of linear chains.
doi_str_mv 10.1039/c5sm01882j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762070231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1727699108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-b592163072c4972720b1cce4ef9fd2b3817890570517908a0273a39b3b00008c3</originalsourceid><addsrcrecordid>eNqNks1P3DAQxa2qqFDaC_dW5lZVCh3bSWwf0fJRKqAHQOotcmxna-TYIU6K9r-vt0uXG8IXv_H7aTSaZ4QOCBwRYPKbrlIPRAh6_wbtEV6WRS1K8Xar2a9d9D6lewAmSlK_Q7u0ZllzvodWd8H9sWNSHietvAtLHDusx_hosi5cMLO2Bp9cH-M-ts67aYVdwjrOg8_vj276jac4RB-Xq8LYwQZjw5RZb_Xs1ZjJflB6cjFgFQy2PoalWpcf0E6nfLIfn-59dHd2erv4Xlz-PL9YHF8WugQyFW0lKcnjcqpLySmn0BKtbWk72RnaMkG4kFBxqAiXIBRQzhSTLWshH6HZPvqy6TuM8WG2aWp6l7T1XgUb59QQXlPgQBl5BUp5LSUB8QqUCMZAsjX6dYPmraY02q4ZRtercdUQaNYBNovq5upfgD8y_Pmp79z21mzR_4ll4NMGGJPeus8_IPuHL_nNYDr2F-jCq0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718330938</pqid></control><display><type>article</type><title>Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gorczyca, Stephanie M ; Chapman, Cole D ; Robertson-Anderson, Rae M</creator><creatorcontrib>Gorczyca, Stephanie M ; Chapman, Cole D ; Robertson-Anderson, Rae M</creatorcontrib><description>Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) of dextran (10, 500 kDa) that mimic cellular conditions. By tracking the center-of-mass and measuring the lengths of the major and minor axes of single DNA molecules, we characterize both DNA mobility reduction as well as crowding-induced conformational changes (from random spherical coils). We reveal novel topology-dependent conformations, with single ring molecules undergoing compaction to ordered spherical configurations ∼20% smaller than dilute random coils, while linear DNA elongates by ∼2-fold. Surprisingly, these highly different conformations result in nearly identical exponential mobility reduction dependent solely on crowder volume fraction Φ , revealing a universal critical crowding concentration of Φ c ≅ 2.3. Beyond Φ c DNA exhibits topology-independent conformational relaxation dynamics despite highly distinct topology-driven conformations. Our collective results reveal that topology-dependent conformational changes, unique to crowded environments, enable DNA to overcome the classically expected mobility reduction that high-viscosity crowded environments impose. Such coupled universal dynamics suggest a mechanism for DNA to maintain sufficient mobility required for wide-ranging biological processes despite severe cellular crowding. Universal scaling of crowding-induced DNA mobility is coupled with entropically-driven compaction of rings and elongation of linear chains.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c5sm01882j</identifier><identifier>PMID: 26303877</identifier><language>eng</language><publisher>England</publisher><subject>Benzoxazoles - chemistry ; Cellular ; Coils ; Crowding ; Deoxyribonucleic acid ; Dextrans - chemistry ; Diffusion ; DNA, Bacterial - chemistry ; DNA, Bacterial - metabolism ; Dynamics ; Elongation ; Escherichia coli - genetics ; Microscopy, Fluorescence ; Nucleic Acid Conformation ; Quinolinium Compounds - chemistry ; Reduction ; Rings (mathematics)</subject><ispartof>Soft matter, 2015-10, Vol.11 (39), p.7762-7768</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-b592163072c4972720b1cce4ef9fd2b3817890570517908a0273a39b3b00008c3</citedby><cites>FETCH-LOGICAL-c401t-b592163072c4972720b1cce4ef9fd2b3817890570517908a0273a39b3b00008c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26303877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorczyca, Stephanie M</creatorcontrib><creatorcontrib>Chapman, Cole D</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><title>Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) of dextran (10, 500 kDa) that mimic cellular conditions. By tracking the center-of-mass and measuring the lengths of the major and minor axes of single DNA molecules, we characterize both DNA mobility reduction as well as crowding-induced conformational changes (from random spherical coils). We reveal novel topology-dependent conformations, with single ring molecules undergoing compaction to ordered spherical configurations ∼20% smaller than dilute random coils, while linear DNA elongates by ∼2-fold. Surprisingly, these highly different conformations result in nearly identical exponential mobility reduction dependent solely on crowder volume fraction Φ , revealing a universal critical crowding concentration of Φ c ≅ 2.3. Beyond Φ c DNA exhibits topology-independent conformational relaxation dynamics despite highly distinct topology-driven conformations. Our collective results reveal that topology-dependent conformational changes, unique to crowded environments, enable DNA to overcome the classically expected mobility reduction that high-viscosity crowded environments impose. Such coupled universal dynamics suggest a mechanism for DNA to maintain sufficient mobility required for wide-ranging biological processes despite severe cellular crowding. Universal scaling of crowding-induced DNA mobility is coupled with entropically-driven compaction of rings and elongation of linear chains.</description><subject>Benzoxazoles - chemistry</subject><subject>Cellular</subject><subject>Coils</subject><subject>Crowding</subject><subject>Deoxyribonucleic acid</subject><subject>Dextrans - chemistry</subject><subject>Diffusion</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - metabolism</subject><subject>Dynamics</subject><subject>Elongation</subject><subject>Escherichia coli - genetics</subject><subject>Microscopy, Fluorescence</subject><subject>Nucleic Acid Conformation</subject><subject>Quinolinium Compounds - chemistry</subject><subject>Reduction</subject><subject>Rings (mathematics)</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1P3DAQxa2qqFDaC_dW5lZVCh3bSWwf0fJRKqAHQOotcmxna-TYIU6K9r-vt0uXG8IXv_H7aTSaZ4QOCBwRYPKbrlIPRAh6_wbtEV6WRS1K8Xar2a9d9D6lewAmSlK_Q7u0ZllzvodWd8H9sWNSHietvAtLHDusx_hosi5cMLO2Bp9cH-M-ts67aYVdwjrOg8_vj276jac4RB-Xq8LYwQZjw5RZb_Xs1ZjJflB6cjFgFQy2PoalWpcf0E6nfLIfn-59dHd2erv4Xlz-PL9YHF8WugQyFW0lKcnjcqpLySmn0BKtbWk72RnaMkG4kFBxqAiXIBRQzhSTLWshH6HZPvqy6TuM8WG2aWp6l7T1XgUb59QQXlPgQBl5BUp5LSUB8QqUCMZAsjX6dYPmraY02q4ZRtercdUQaNYBNovq5upfgD8y_Pmp79z21mzR_4ll4NMGGJPeus8_IPuHL_nNYDr2F-jCq0Y</recordid><startdate>20151021</startdate><enddate>20151021</enddate><creator>Gorczyca, Stephanie M</creator><creator>Chapman, Cole D</creator><creator>Robertson-Anderson, Rae M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TM</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20151021</creationdate><title>Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation</title><author>Gorczyca, Stephanie M ; Chapman, Cole D ; Robertson-Anderson, Rae M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-b592163072c4972720b1cce4ef9fd2b3817890570517908a0273a39b3b00008c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Benzoxazoles - chemistry</topic><topic>Cellular</topic><topic>Coils</topic><topic>Crowding</topic><topic>Deoxyribonucleic acid</topic><topic>Dextrans - chemistry</topic><topic>Diffusion</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - metabolism</topic><topic>Dynamics</topic><topic>Elongation</topic><topic>Escherichia coli - genetics</topic><topic>Microscopy, Fluorescence</topic><topic>Nucleic Acid Conformation</topic><topic>Quinolinium Compounds - chemistry</topic><topic>Reduction</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorczyca, Stephanie M</creatorcontrib><creatorcontrib>Chapman, Cole D</creatorcontrib><creatorcontrib>Robertson-Anderson, Rae M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorczyca, Stephanie M</au><au>Chapman, Cole D</au><au>Robertson-Anderson, Rae M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2015-10-21</date><risdate>2015</risdate><volume>11</volume><issue>39</issue><spage>7762</spage><epage>7768</epage><pages>7762-7768</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Using single-molecule fluorescence microscopy and particle-tracking techniques, we elucidate the role DNA topology plays in the diffusion and conformational dynamics of crowded DNA molecules. We focus on large (115 kbp), double-stranded ring and linear DNA crowded by varying concentrations (0-40%) of dextran (10, 500 kDa) that mimic cellular conditions. By tracking the center-of-mass and measuring the lengths of the major and minor axes of single DNA molecules, we characterize both DNA mobility reduction as well as crowding-induced conformational changes (from random spherical coils). We reveal novel topology-dependent conformations, with single ring molecules undergoing compaction to ordered spherical configurations ∼20% smaller than dilute random coils, while linear DNA elongates by ∼2-fold. Surprisingly, these highly different conformations result in nearly identical exponential mobility reduction dependent solely on crowder volume fraction Φ , revealing a universal critical crowding concentration of Φ c ≅ 2.3. Beyond Φ c DNA exhibits topology-independent conformational relaxation dynamics despite highly distinct topology-driven conformations. Our collective results reveal that topology-dependent conformational changes, unique to crowded environments, enable DNA to overcome the classically expected mobility reduction that high-viscosity crowded environments impose. Such coupled universal dynamics suggest a mechanism for DNA to maintain sufficient mobility required for wide-ranging biological processes despite severe cellular crowding. Universal scaling of crowding-induced DNA mobility is coupled with entropically-driven compaction of rings and elongation of linear chains.</abstract><cop>England</cop><pmid>26303877</pmid><doi>10.1039/c5sm01882j</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2015-10, Vol.11 (39), p.7762-7768
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_1762070231
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Benzoxazoles - chemistry
Cellular
Coils
Crowding
Deoxyribonucleic acid
Dextrans - chemistry
Diffusion
DNA, Bacterial - chemistry
DNA, Bacterial - metabolism
Dynamics
Elongation
Escherichia coli - genetics
Microscopy, Fluorescence
Nucleic Acid Conformation
Quinolinium Compounds - chemistry
Reduction
Rings (mathematics)
title Universal scaling of crowding-induced DNA mobility is coupled with topology-dependent molecular compaction and elongation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20scaling%20of%20crowding-induced%20DNA%20mobility%20is%20coupled%20with%20topology-dependent%20molecular%20compaction%20and%20elongation&rft.jtitle=Soft%20matter&rft.au=Gorczyca,%20Stephanie%20M&rft.date=2015-10-21&rft.volume=11&rft.issue=39&rft.spage=7762&rft.epage=7768&rft.pages=7762-7768&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c5sm01882j&rft_dat=%3Cproquest_cross%3E1727699108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718330938&rft_id=info:pmid/26303877&rfr_iscdi=true