Charge Percolation Pathways Guided by Defects in Quantum Dot Solids

Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-05, Vol.15 (5), p.3249-3253
Hauptverfasser: Zhang, Yingjie, Zherebetskyy, Danylo, Bronstein, Noah D, Barja, Sara, Lichtenstein, Leonid, Schuppisser, David, Wang, Lin-Wang, Alivisatos, A. Paul, Salmeron, Miquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3253
container_issue 5
container_start_page 3249
container_title Nano letters
container_volume 15
creator Zhang, Yingjie
Zherebetskyy, Danylo
Bronstein, Noah D
Barja, Sara
Lichtenstein, Leonid
Schuppisser, David
Wang, Lin-Wang
Alivisatos, A. Paul
Salmeron, Miquel
description Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.
doi_str_mv 10.1021/acs.nanolett.5b00454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762066569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762066569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRbK2-gcgs3aTOvZmltFqFghV1PcwtNiXJ1MwE6dub0tqlrs6F7z8HPgCuMRpjRPCdtnHc6CZUPqUxNwgxzk7AEHOKMiElOT32ORuAixjXCCFJOToHA8JzxiSWQzCdrnT76eHStzZUOpWhgUudVt96G-G8K5130GzhzBfepgjLBr52ukldDWchwbdQlS5egrNCV9FfHeoIfDw-vE-fssXL_Hl6v8g0kzRlArOCOGMcZox6T_rlhDJBqSXE9YOXlmkpsOG5zSUuhMGMOonMJDdOU0RH4HZ_d9OGr87HpOoyWl9VuvGhiwpPBEFCcCH_R0WOJBeI8h5le9S2IcbWF2rTlrVutwojtTOtetPq17Q6mO5jN4cPnam9O4Z-1fYA2gO7-Dp0bdO7-fvmD4S7i-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680956035</pqid></control><display><type>article</type><title>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</title><source>American Chemical Society Journals</source><creator>Zhang, Yingjie ; Zherebetskyy, Danylo ; Bronstein, Noah D ; Barja, Sara ; Lichtenstein, Leonid ; Schuppisser, David ; Wang, Lin-Wang ; Alivisatos, A. Paul ; Salmeron, Miquel</creator><creatorcontrib>Zhang, Yingjie ; Zherebetskyy, Danylo ; Bronstein, Noah D ; Barja, Sara ; Lichtenstein, Leonid ; Schuppisser, David ; Wang, Lin-Wang ; Alivisatos, A. Paul ; Salmeron, Miquel</creatorcontrib><description>Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b00454</identifier><identifier>PMID: 25844919</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Arrays ; Charge ; Defects ; Microscopy ; Pathways ; Percolation ; Quantum dots ; Semiconductors</subject><ispartof>Nano letters, 2015-05, Vol.15 (5), p.3249-3253</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</citedby><cites>FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b00454$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b00454$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25844919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Zherebetskyy, Danylo</creatorcontrib><creatorcontrib>Bronstein, Noah D</creatorcontrib><creatorcontrib>Barja, Sara</creatorcontrib><creatorcontrib>Lichtenstein, Leonid</creatorcontrib><creatorcontrib>Schuppisser, David</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Salmeron, Miquel</creatorcontrib><title>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.</description><subject>Arrays</subject><subject>Charge</subject><subject>Defects</subject><subject>Microscopy</subject><subject>Pathways</subject><subject>Percolation</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRbK2-gcgs3aTOvZmltFqFghV1PcwtNiXJ1MwE6dub0tqlrs6F7z8HPgCuMRpjRPCdtnHc6CZUPqUxNwgxzk7AEHOKMiElOT32ORuAixjXCCFJOToHA8JzxiSWQzCdrnT76eHStzZUOpWhgUudVt96G-G8K5130GzhzBfepgjLBr52ukldDWchwbdQlS5egrNCV9FfHeoIfDw-vE-fssXL_Hl6v8g0kzRlArOCOGMcZox6T_rlhDJBqSXE9YOXlmkpsOG5zSUuhMGMOonMJDdOU0RH4HZ_d9OGr87HpOoyWl9VuvGhiwpPBEFCcCH_R0WOJBeI8h5le9S2IcbWF2rTlrVutwojtTOtetPq17Q6mO5jN4cPnam9O4Z-1fYA2gO7-Dp0bdO7-fvmD4S7i-E</recordid><startdate>20150513</startdate><enddate>20150513</enddate><creator>Zhang, Yingjie</creator><creator>Zherebetskyy, Danylo</creator><creator>Bronstein, Noah D</creator><creator>Barja, Sara</creator><creator>Lichtenstein, Leonid</creator><creator>Schuppisser, David</creator><creator>Wang, Lin-Wang</creator><creator>Alivisatos, A. Paul</creator><creator>Salmeron, Miquel</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150513</creationdate><title>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</title><author>Zhang, Yingjie ; Zherebetskyy, Danylo ; Bronstein, Noah D ; Barja, Sara ; Lichtenstein, Leonid ; Schuppisser, David ; Wang, Lin-Wang ; Alivisatos, A. Paul ; Salmeron, Miquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Charge</topic><topic>Defects</topic><topic>Microscopy</topic><topic>Pathways</topic><topic>Percolation</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Zherebetskyy, Danylo</creatorcontrib><creatorcontrib>Bronstein, Noah D</creatorcontrib><creatorcontrib>Barja, Sara</creatorcontrib><creatorcontrib>Lichtenstein, Leonid</creatorcontrib><creatorcontrib>Schuppisser, David</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Salmeron, Miquel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yingjie</au><au>Zherebetskyy, Danylo</au><au>Bronstein, Noah D</au><au>Barja, Sara</au><au>Lichtenstein, Leonid</au><au>Schuppisser, David</au><au>Wang, Lin-Wang</au><au>Alivisatos, A. Paul</au><au>Salmeron, Miquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-05-13</date><risdate>2015</risdate><volume>15</volume><issue>5</issue><spage>3249</spage><epage>3253</epage><pages>3249-3253</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25844919</pmid><doi>10.1021/acs.nanolett.5b00454</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-05, Vol.15 (5), p.3249-3253
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762066569
source American Chemical Society Journals
subjects Arrays
Charge
Defects
Microscopy
Pathways
Percolation
Quantum dots
Semiconductors
title Charge Percolation Pathways Guided by Defects in Quantum Dot Solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Percolation%20Pathways%20Guided%20by%20Defects%20in%20Quantum%20Dot%20Solids&rft.jtitle=Nano%20letters&rft.au=Zhang,%20Yingjie&rft.date=2015-05-13&rft.volume=15&rft.issue=5&rft.spage=3249&rft.epage=3253&rft.pages=3249-3253&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b00454&rft_dat=%3Cproquest_cross%3E1762066569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680956035&rft_id=info:pmid/25844919&rfr_iscdi=true