Charge Percolation Pathways Guided by Defects in Quantum Dot Solids
Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force mic...
Gespeichert in:
Veröffentlicht in: | Nano letters 2015-05, Vol.15 (5), p.3249-3253 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3253 |
---|---|
container_issue | 5 |
container_start_page | 3249 |
container_title | Nano letters |
container_volume | 15 |
creator | Zhang, Yingjie Zherebetskyy, Danylo Bronstein, Noah D Barja, Sara Lichtenstein, Leonid Schuppisser, David Wang, Lin-Wang Alivisatos, A. Paul Salmeron, Miquel |
description | Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping. |
doi_str_mv | 10.1021/acs.nanolett.5b00454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762066569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762066569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRbK2-gcgs3aTOvZmltFqFghV1PcwtNiXJ1MwE6dub0tqlrs6F7z8HPgCuMRpjRPCdtnHc6CZUPqUxNwgxzk7AEHOKMiElOT32ORuAixjXCCFJOToHA8JzxiSWQzCdrnT76eHStzZUOpWhgUudVt96G-G8K5130GzhzBfepgjLBr52ukldDWchwbdQlS5egrNCV9FfHeoIfDw-vE-fssXL_Hl6v8g0kzRlArOCOGMcZox6T_rlhDJBqSXE9YOXlmkpsOG5zSUuhMGMOonMJDdOU0RH4HZ_d9OGr87HpOoyWl9VuvGhiwpPBEFCcCH_R0WOJBeI8h5le9S2IcbWF2rTlrVutwojtTOtetPq17Q6mO5jN4cPnam9O4Z-1fYA2gO7-Dp0bdO7-fvmD4S7i-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680956035</pqid></control><display><type>article</type><title>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</title><source>American Chemical Society Journals</source><creator>Zhang, Yingjie ; Zherebetskyy, Danylo ; Bronstein, Noah D ; Barja, Sara ; Lichtenstein, Leonid ; Schuppisser, David ; Wang, Lin-Wang ; Alivisatos, A. Paul ; Salmeron, Miquel</creator><creatorcontrib>Zhang, Yingjie ; Zherebetskyy, Danylo ; Bronstein, Noah D ; Barja, Sara ; Lichtenstein, Leonid ; Schuppisser, David ; Wang, Lin-Wang ; Alivisatos, A. Paul ; Salmeron, Miquel</creatorcontrib><description>Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b00454</identifier><identifier>PMID: 25844919</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Arrays ; Charge ; Defects ; Microscopy ; Pathways ; Percolation ; Quantum dots ; Semiconductors</subject><ispartof>Nano letters, 2015-05, Vol.15 (5), p.3249-3253</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</citedby><cites>FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b00454$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b00454$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25844919$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Zherebetskyy, Danylo</creatorcontrib><creatorcontrib>Bronstein, Noah D</creatorcontrib><creatorcontrib>Barja, Sara</creatorcontrib><creatorcontrib>Lichtenstein, Leonid</creatorcontrib><creatorcontrib>Schuppisser, David</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Salmeron, Miquel</creatorcontrib><title>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.</description><subject>Arrays</subject><subject>Charge</subject><subject>Defects</subject><subject>Microscopy</subject><subject>Pathways</subject><subject>Percolation</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRbK2-gcgs3aTOvZmltFqFghV1PcwtNiXJ1MwE6dub0tqlrs6F7z8HPgCuMRpjRPCdtnHc6CZUPqUxNwgxzk7AEHOKMiElOT32ORuAixjXCCFJOToHA8JzxiSWQzCdrnT76eHStzZUOpWhgUudVt96G-G8K5130GzhzBfepgjLBr52ukldDWchwbdQlS5egrNCV9FfHeoIfDw-vE-fssXL_Hl6v8g0kzRlArOCOGMcZox6T_rlhDJBqSXE9YOXlmkpsOG5zSUuhMGMOonMJDdOU0RH4HZ_d9OGr87HpOoyWl9VuvGhiwpPBEFCcCH_R0WOJBeI8h5le9S2IcbWF2rTlrVutwojtTOtetPq17Q6mO5jN4cPnam9O4Z-1fYA2gO7-Dp0bdO7-fvmD4S7i-E</recordid><startdate>20150513</startdate><enddate>20150513</enddate><creator>Zhang, Yingjie</creator><creator>Zherebetskyy, Danylo</creator><creator>Bronstein, Noah D</creator><creator>Barja, Sara</creator><creator>Lichtenstein, Leonid</creator><creator>Schuppisser, David</creator><creator>Wang, Lin-Wang</creator><creator>Alivisatos, A. Paul</creator><creator>Salmeron, Miquel</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150513</creationdate><title>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</title><author>Zhang, Yingjie ; Zherebetskyy, Danylo ; Bronstein, Noah D ; Barja, Sara ; Lichtenstein, Leonid ; Schuppisser, David ; Wang, Lin-Wang ; Alivisatos, A. Paul ; Salmeron, Miquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-614f2dbbd1443ee2493734633c22d493e9c4a961b58c891f6b143d90b78bda303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Arrays</topic><topic>Charge</topic><topic>Defects</topic><topic>Microscopy</topic><topic>Pathways</topic><topic>Percolation</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yingjie</creatorcontrib><creatorcontrib>Zherebetskyy, Danylo</creatorcontrib><creatorcontrib>Bronstein, Noah D</creatorcontrib><creatorcontrib>Barja, Sara</creatorcontrib><creatorcontrib>Lichtenstein, Leonid</creatorcontrib><creatorcontrib>Schuppisser, David</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Salmeron, Miquel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yingjie</au><au>Zherebetskyy, Danylo</au><au>Bronstein, Noah D</au><au>Barja, Sara</au><au>Lichtenstein, Leonid</au><au>Schuppisser, David</au><au>Wang, Lin-Wang</au><au>Alivisatos, A. Paul</au><au>Salmeron, Miquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Percolation Pathways Guided by Defects in Quantum Dot Solids</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-05-13</date><risdate>2015</risdate><volume>15</volume><issue>5</issue><spage>3249</spage><epage>3253</epage><pages>3249-3253</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Charge hopping and percolation in quantum dot (QD) solids has been widely studied, but the microscopic nature of the percolation process is not understood or determined. Here we present the first imaging of the charge percolation pathways in two-dimensional PbS QD arrays using Kelvin probe force microscopy (KPFM). We show that under dark conditions electrons percolate via in-gap states (IGS) instead of the conduction band, while holes percolate via valence band states. This novel transport behavior is explained by the electronic structure and energy level alignment of the individual QDs, which was measured by scanning tunneling spectroscopy (STS). Chemical treatments with hydrazine can remove the IGS, resulting in an intrinsic defect-free semiconductor, as revealed by STS and surface potential spectroscopy. The control over IGS can guide the design of novel electronic devices with impurity conduction, and photodiodes with controlled doping.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25844919</pmid><doi>10.1021/acs.nanolett.5b00454</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2015-05, Vol.15 (5), p.3249-3253 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762066569 |
source | American Chemical Society Journals |
subjects | Arrays Charge Defects Microscopy Pathways Percolation Quantum dots Semiconductors |
title | Charge Percolation Pathways Guided by Defects in Quantum Dot Solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T08%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Percolation%20Pathways%20Guided%20by%20Defects%20in%20Quantum%20Dot%20Solids&rft.jtitle=Nano%20letters&rft.au=Zhang,%20Yingjie&rft.date=2015-05-13&rft.volume=15&rft.issue=5&rft.spage=3249&rft.epage=3253&rft.pages=3249-3253&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b00454&rft_dat=%3Cproquest_cross%3E1762066569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680956035&rft_id=info:pmid/25844919&rfr_iscdi=true |