Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide
A deep understanding of the interaction of a graphene oxide (GO) sheet with cells at the molecular level may expedite its biomedical application and predict its new functions and adverse effects. Herein we inspect the interaction between micrometer-sized GO (mGO), commonly used in biomedical researc...
Gespeichert in:
Veröffentlicht in: | ACS nano 2015-08, Vol.9 (8), p.7913-7924 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7924 |
---|---|
container_issue | 8 |
container_start_page | 7913 |
container_title | ACS nano |
container_volume | 9 |
creator | Wu, Congyu Wang, Chong Zheng, Jing Luo, Chao Li, Yanfang Guo, Shouwu Zhang, Jingyan |
description | A deep understanding of the interaction of a graphene oxide (GO) sheet with cells at the molecular level may expedite its biomedical application and predict its new functions and adverse effects. Herein we inspect the interaction between micrometer-sized GO (mGO), commonly used in biomedical research, and cells at the molecular level through a variety of techniques. A major finding is that, instead of direct cellular penetration, the mGO sheets can stimulate the cellular response by interacting with the membrane protein and the membrane. Specifically, it is illustrated that even within a short exposure time the mGO sheets can induce the formation of vacuoles in the cytosolic compartment and enhance the cell permeability. The vacuolization is only observed in the cells that strongly express aquaporin (AQP1), indicating the specific interaction of the mGO with AQP1. Moreover, inhibition of the AQP1 activity prevents the formation of vacuoles, revealing that the interaction of the mGO with AQP1 occurs most probably at the vestibule of AQP1 at the extracellular side. Additionally, though the cell permeability was enhanced, it only improves the penetration of small molecules, not for macromolecules such as proteins. These findings are potentially valuable in cancer therapy because AQPs are strongly expressed in tumor cells of different origins, particularly aggressive tumors, and it will also be beneficial for drug transport across barrier membranes. |
doi_str_mv | 10.1021/acsnano.5b01685 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762065451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1707559802</sourcerecordid><originalsourceid>FETCH-LOGICAL-a366t-7180a809a66ebf682c6ccda1475b2fd63747e8b8f303510ae50b720b6d63bf113</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoVqtnb5KjIFuT3eajRym1CoqCH3hbJruzmrKbrcku2P71Rlq9CZ4mTH7vwZtHyAlnI85SfgFFcODakTCMSy12yAGfZDJhWr7u_r4FH5DDEBaMCaWV3CeDVKZMyUl2QPwLFH1b2zV0tnXUOjpdde2yhtBQcCWdYl3TO2yMB4f0AX2DYGxtuxWduXdwBTboOvrk7dsbeiypWdE7W_i2wQ598mjXcTf3sHzHqL__tCUekb0K6oDH2zkkz1ezp-l1cns_v5le3iaQSdklimsGmk1ASjSV1Gkhi6IEPlbCpFUpMzVWqI2uMpYJzgAFMyplRsYvU3GeDcnZxnfp248eQ5c3NhQxT0zS9iHnKl5BirH4D8qUEBPN0ohebNCYMQSPVb70tgG_yjnLvzvJt53k206i4nRr3psGy1_-p4QInG-AqMwXbe9dPMufdl_mh5hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1707559802</pqid></control><display><type>article</type><title>Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wu, Congyu ; Wang, Chong ; Zheng, Jing ; Luo, Chao ; Li, Yanfang ; Guo, Shouwu ; Zhang, Jingyan</creator><creatorcontrib>Wu, Congyu ; Wang, Chong ; Zheng, Jing ; Luo, Chao ; Li, Yanfang ; Guo, Shouwu ; Zhang, Jingyan</creatorcontrib><description>A deep understanding of the interaction of a graphene oxide (GO) sheet with cells at the molecular level may expedite its biomedical application and predict its new functions and adverse effects. Herein we inspect the interaction between micrometer-sized GO (mGO), commonly used in biomedical research, and cells at the molecular level through a variety of techniques. A major finding is that, instead of direct cellular penetration, the mGO sheets can stimulate the cellular response by interacting with the membrane protein and the membrane. Specifically, it is illustrated that even within a short exposure time the mGO sheets can induce the formation of vacuoles in the cytosolic compartment and enhance the cell permeability. The vacuolization is only observed in the cells that strongly express aquaporin (AQP1), indicating the specific interaction of the mGO with AQP1. Moreover, inhibition of the AQP1 activity prevents the formation of vacuoles, revealing that the interaction of the mGO with AQP1 occurs most probably at the vestibule of AQP1 at the extracellular side. Additionally, though the cell permeability was enhanced, it only improves the penetration of small molecules, not for macromolecules such as proteins. These findings are potentially valuable in cancer therapy because AQPs are strongly expressed in tumor cells of different origins, particularly aggressive tumors, and it will also be beneficial for drug transport across barrier membranes.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.5b01685</identifier><identifier>PMID: 26207693</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amines ; Aquaporin 1 - antagonists & inhibitors ; Aquaporin 1 - genetics ; Aquaporin 1 - metabolism ; Biological Transport ; Cell Line, Tumor ; Cell Membrane - chemistry ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; Cell Membrane Permeability - drug effects ; Cellular ; Fluorescent Dyes ; Gene Expression ; Genes, Reporter ; Graphene ; Graphite - pharmacology ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; Magnesium oxide ; MCF-7 Cells ; Membranes ; Mercuric Chloride - pharmacology ; Microscopy, Electron, Transmission ; Oxides ; Penetration ; Permeability ; Tumors ; Vacuoles - drug effects ; Vacuoles - metabolism ; Vacuoles - ultrastructure ; Water - metabolism</subject><ispartof>ACS nano, 2015-08, Vol.9 (8), p.7913-7924</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a366t-7180a809a66ebf682c6ccda1475b2fd63747e8b8f303510ae50b720b6d63bf113</citedby><cites>FETCH-LOGICAL-a366t-7180a809a66ebf682c6ccda1475b2fd63747e8b8f303510ae50b720b6d63bf113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.5b01685$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.5b01685$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26207693$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Congyu</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Li, Yanfang</creatorcontrib><creatorcontrib>Guo, Shouwu</creatorcontrib><creatorcontrib>Zhang, Jingyan</creatorcontrib><title>Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>A deep understanding of the interaction of a graphene oxide (GO) sheet with cells at the molecular level may expedite its biomedical application and predict its new functions and adverse effects. Herein we inspect the interaction between micrometer-sized GO (mGO), commonly used in biomedical research, and cells at the molecular level through a variety of techniques. A major finding is that, instead of direct cellular penetration, the mGO sheets can stimulate the cellular response by interacting with the membrane protein and the membrane. Specifically, it is illustrated that even within a short exposure time the mGO sheets can induce the formation of vacuoles in the cytosolic compartment and enhance the cell permeability. The vacuolization is only observed in the cells that strongly express aquaporin (AQP1), indicating the specific interaction of the mGO with AQP1. Moreover, inhibition of the AQP1 activity prevents the formation of vacuoles, revealing that the interaction of the mGO with AQP1 occurs most probably at the vestibule of AQP1 at the extracellular side. Additionally, though the cell permeability was enhanced, it only improves the penetration of small molecules, not for macromolecules such as proteins. These findings are potentially valuable in cancer therapy because AQPs are strongly expressed in tumor cells of different origins, particularly aggressive tumors, and it will also be beneficial for drug transport across barrier membranes.</description><subject>Amines</subject><subject>Aquaporin 1 - antagonists & inhibitors</subject><subject>Aquaporin 1 - genetics</subject><subject>Aquaporin 1 - metabolism</subject><subject>Biological Transport</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cellular</subject><subject>Fluorescent Dyes</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Graphene</subject><subject>Graphite - pharmacology</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Magnesium oxide</subject><subject>MCF-7 Cells</subject><subject>Membranes</subject><subject>Mercuric Chloride - pharmacology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Oxides</subject><subject>Penetration</subject><subject>Permeability</subject><subject>Tumors</subject><subject>Vacuoles - drug effects</subject><subject>Vacuoles - metabolism</subject><subject>Vacuoles - ultrastructure</subject><subject>Water - metabolism</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1LAzEQxYMoVqtnb5KjIFuT3eajRym1CoqCH3hbJruzmrKbrcku2P71Rlq9CZ4mTH7vwZtHyAlnI85SfgFFcODakTCMSy12yAGfZDJhWr7u_r4FH5DDEBaMCaWV3CeDVKZMyUl2QPwLFH1b2zV0tnXUOjpdde2yhtBQcCWdYl3TO2yMB4f0AX2DYGxtuxWduXdwBTboOvrk7dsbeiypWdE7W_i2wQ598mjXcTf3sHzHqL__tCUekb0K6oDH2zkkz1ezp-l1cns_v5le3iaQSdklimsGmk1ASjSV1Gkhi6IEPlbCpFUpMzVWqI2uMpYJzgAFMyplRsYvU3GeDcnZxnfp248eQ5c3NhQxT0zS9iHnKl5BirH4D8qUEBPN0ohebNCYMQSPVb70tgG_yjnLvzvJt53k206i4nRr3psGy1_-p4QInG-AqMwXbe9dPMufdl_mh5hw</recordid><startdate>20150825</startdate><enddate>20150825</enddate><creator>Wu, Congyu</creator><creator>Wang, Chong</creator><creator>Zheng, Jing</creator><creator>Luo, Chao</creator><creator>Li, Yanfang</creator><creator>Guo, Shouwu</creator><creator>Zhang, Jingyan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150825</creationdate><title>Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide</title><author>Wu, Congyu ; Wang, Chong ; Zheng, Jing ; Luo, Chao ; Li, Yanfang ; Guo, Shouwu ; Zhang, Jingyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a366t-7180a809a66ebf682c6ccda1475b2fd63747e8b8f303510ae50b720b6d63bf113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amines</topic><topic>Aquaporin 1 - antagonists & inhibitors</topic><topic>Aquaporin 1 - genetics</topic><topic>Aquaporin 1 - metabolism</topic><topic>Biological Transport</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cellular</topic><topic>Fluorescent Dyes</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Graphene</topic><topic>Graphite - pharmacology</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Magnesium oxide</topic><topic>MCF-7 Cells</topic><topic>Membranes</topic><topic>Mercuric Chloride - pharmacology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Oxides</topic><topic>Penetration</topic><topic>Permeability</topic><topic>Tumors</topic><topic>Vacuoles - drug effects</topic><topic>Vacuoles - metabolism</topic><topic>Vacuoles - ultrastructure</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Congyu</creatorcontrib><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Zheng, Jing</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Li, Yanfang</creatorcontrib><creatorcontrib>Guo, Shouwu</creatorcontrib><creatorcontrib>Zhang, Jingyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Congyu</au><au>Wang, Chong</au><au>Zheng, Jing</au><au>Luo, Chao</au><au>Li, Yanfang</au><au>Guo, Shouwu</au><au>Zhang, Jingyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2015-08-25</date><risdate>2015</risdate><volume>9</volume><issue>8</issue><spage>7913</spage><epage>7924</epage><pages>7913-7924</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>A deep understanding of the interaction of a graphene oxide (GO) sheet with cells at the molecular level may expedite its biomedical application and predict its new functions and adverse effects. Herein we inspect the interaction between micrometer-sized GO (mGO), commonly used in biomedical research, and cells at the molecular level through a variety of techniques. A major finding is that, instead of direct cellular penetration, the mGO sheets can stimulate the cellular response by interacting with the membrane protein and the membrane. Specifically, it is illustrated that even within a short exposure time the mGO sheets can induce the formation of vacuoles in the cytosolic compartment and enhance the cell permeability. The vacuolization is only observed in the cells that strongly express aquaporin (AQP1), indicating the specific interaction of the mGO with AQP1. Moreover, inhibition of the AQP1 activity prevents the formation of vacuoles, revealing that the interaction of the mGO with AQP1 occurs most probably at the vestibule of AQP1 at the extracellular side. Additionally, though the cell permeability was enhanced, it only improves the penetration of small molecules, not for macromolecules such as proteins. These findings are potentially valuable in cancer therapy because AQPs are strongly expressed in tumor cells of different origins, particularly aggressive tumors, and it will also be beneficial for drug transport across barrier membranes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26207693</pmid><doi>10.1021/acsnano.5b01685</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2015-08, Vol.9 (8), p.7913-7924 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762065451 |
source | MEDLINE; ACS Publications |
subjects | Amines Aquaporin 1 - antagonists & inhibitors Aquaporin 1 - genetics Aquaporin 1 - metabolism Biological Transport Cell Line, Tumor Cell Membrane - chemistry Cell Membrane - drug effects Cell Membrane - metabolism Cell Membrane Permeability - drug effects Cellular Fluorescent Dyes Gene Expression Genes, Reporter Graphene Graphite - pharmacology Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humans Magnesium oxide MCF-7 Cells Membranes Mercuric Chloride - pharmacology Microscopy, Electron, Transmission Oxides Penetration Permeability Tumors Vacuoles - drug effects Vacuoles - metabolism Vacuoles - ultrastructure Water - metabolism |
title | Vacuolization in Cytoplasm and Cell Membrane Permeability Enhancement Triggered by Micrometer-Sized Graphene Oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vacuolization%20in%20Cytoplasm%20and%20Cell%20Membrane%20Permeability%20Enhancement%20Triggered%20by%20Micrometer-Sized%20Graphene%20Oxide&rft.jtitle=ACS%20nano&rft.au=Wu,%20Congyu&rft.date=2015-08-25&rft.volume=9&rft.issue=8&rft.spage=7913&rft.epage=7924&rft.pages=7913-7924&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.5b01685&rft_dat=%3Cproquest_cross%3E1707559802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1707559802&rft_id=info:pmid/26207693&rfr_iscdi=true |