Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics

Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-05, Vol.15 (5), p.3410-3419
Hauptverfasser: Barbry, M, Koval, P, Marchesin, F, Esteban, R, Borisov, A. G, Aizpurua, J, Sánchez-Portal, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3419
container_issue 5
container_start_page 3410
container_title Nano letters
container_volume 15
creator Barbry, M
Koval, P
Marchesin, F
Esteban, R
Borisov, A. G
Aizpurua, J
Sánchez-Portal, D
description Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optical spectroscopies. However, a variety of physical and chemical processes rely on the fine distribution of the local fields at this ultraconfined scale. We use time-dependent density functional theory and perform atomistic quantum mechanical calculations of the optical response of plasmonic nanoparticles, and their dimers, characterized by the presence of crystallographic planes, facets, vertices, and steps. Using sodium clusters as an example, we show that the atomistic details of the nanoparticles morphologies determine the presence of subnanometric near-field hot spots that are further enhanced by the action of the underlying nanometric plasmonic fields. This situation is analogue to a self-similar nanoantenna cascade effect, scaled down to atomic dimensions, and it provides new insights into the limits of field enhancement and confinement, with important implications in the optical resolution of field-enhanced spectroscopies and microscopies.
doi_str_mv 10.1021/acs.nanolett.5b00759
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762062822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762062822</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-d9db0b3b683ad4d3fa076942de5b9602c21e6d87369fc89ac07c1415c4fca6d93</originalsourceid><addsrcrecordid>eNqFkE9PwyAYh4nRuDn9Bsb06KXzBQot3hbj1GSZidNzQ4FqlxZqaQ9-e9nfo3J5yZvn9yM8CF1jmGIg-E4qP7XSutr0_ZQVACkTJ2iMGYWYC0FOj_csGaEL79cAICiDczQiTGCGUzpGq1nvmsr3lYqWRnbxvDK1jpaht62lb5ytlL-P3oxUX5X9jLa0ildK1iZsvauHvnI2quw249pQ5C_RWSlrb672c4I-5o_vD8_x4vXp5WG2iGUiaB9roQsoaMEzKnWiaSkh5SIh2rBCcCCKYMN1llIuSpUJqSBVOMFMJaWSXAs6Qbe73rZz34PxfR5-okxdS2vc4HOccgKcZIT8j_IMBAsnCWiyQ1XnvO9Mmbdd1cjuJ8eQb8znwXx-MJ_vzYfYzf6FoWiMPoYOqgMAO2ATX7uhs8HN352_m_2TSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680955554</pqid></control><display><type>article</type><title>Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics</title><source>American Chemical Society Publications</source><creator>Barbry, M ; Koval, P ; Marchesin, F ; Esteban, R ; Borisov, A. G ; Aizpurua, J ; Sánchez-Portal, D</creator><creatorcontrib>Barbry, M ; Koval, P ; Marchesin, F ; Esteban, R ; Borisov, A. G ; Aizpurua, J ; Sánchez-Portal, D</creatorcontrib><description>Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optical spectroscopies. However, a variety of physical and chemical processes rely on the fine distribution of the local fields at this ultraconfined scale. We use time-dependent density functional theory and perform atomistic quantum mechanical calculations of the optical response of plasmonic nanoparticles, and their dimers, characterized by the presence of crystallographic planes, facets, vertices, and steps. Using sodium clusters as an example, we show that the atomistic details of the nanoparticles morphologies determine the presence of subnanometric near-field hot spots that are further enhanced by the action of the underlying nanometric plasmonic fields. This situation is analogue to a self-similar nanoantenna cascade effect, scaled down to atomic dimensions, and it provides new insights into the limits of field enhancement and confinement, with important implications in the optical resolution of field-enhanced spectroscopies and microscopies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b00759</identifier><identifier>PMID: 25915173</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Atomic beam spectroscopy ; Mathematical analysis ; Nanoparticles ; Nanostructure ; Plasmonics ; Self-similarity ; Sodium ; Spectroscopy</subject><ispartof>Nano letters, 2015-05, Vol.15 (5), p.3410-3419</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-d9db0b3b683ad4d3fa076942de5b9602c21e6d87369fc89ac07c1415c4fca6d93</citedby><cites>FETCH-LOGICAL-a493t-d9db0b3b683ad4d3fa076942de5b9602c21e6d87369fc89ac07c1415c4fca6d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b00759$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b00759$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25915173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbry, M</creatorcontrib><creatorcontrib>Koval, P</creatorcontrib><creatorcontrib>Marchesin, F</creatorcontrib><creatorcontrib>Esteban, R</creatorcontrib><creatorcontrib>Borisov, A. G</creatorcontrib><creatorcontrib>Aizpurua, J</creatorcontrib><creatorcontrib>Sánchez-Portal, D</creatorcontrib><title>Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optical spectroscopies. However, a variety of physical and chemical processes rely on the fine distribution of the local fields at this ultraconfined scale. We use time-dependent density functional theory and perform atomistic quantum mechanical calculations of the optical response of plasmonic nanoparticles, and their dimers, characterized by the presence of crystallographic planes, facets, vertices, and steps. Using sodium clusters as an example, we show that the atomistic details of the nanoparticles morphologies determine the presence of subnanometric near-field hot spots that are further enhanced by the action of the underlying nanometric plasmonic fields. This situation is analogue to a self-similar nanoantenna cascade effect, scaled down to atomic dimensions, and it provides new insights into the limits of field enhancement and confinement, with important implications in the optical resolution of field-enhanced spectroscopies and microscopies.</description><subject>Atomic beam spectroscopy</subject><subject>Mathematical analysis</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Plasmonics</subject><subject>Self-similarity</subject><subject>Sodium</subject><subject>Spectroscopy</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwyAYh4nRuDn9Bsb06KXzBQot3hbj1GSZidNzQ4FqlxZqaQ9-e9nfo3J5yZvn9yM8CF1jmGIg-E4qP7XSutr0_ZQVACkTJ2iMGYWYC0FOj_csGaEL79cAICiDczQiTGCGUzpGq1nvmsr3lYqWRnbxvDK1jpaht62lb5ytlL-P3oxUX5X9jLa0ildK1iZsvauHvnI2quw249pQ5C_RWSlrb672c4I-5o_vD8_x4vXp5WG2iGUiaB9roQsoaMEzKnWiaSkh5SIh2rBCcCCKYMN1llIuSpUJqSBVOMFMJaWSXAs6Qbe73rZz34PxfR5-okxdS2vc4HOccgKcZIT8j_IMBAsnCWiyQ1XnvO9Mmbdd1cjuJ8eQb8znwXx-MJ_vzYfYzf6FoWiMPoYOqgMAO2ATX7uhs8HN352_m_2TSg</recordid><startdate>20150513</startdate><enddate>20150513</enddate><creator>Barbry, M</creator><creator>Koval, P</creator><creator>Marchesin, F</creator><creator>Esteban, R</creator><creator>Borisov, A. G</creator><creator>Aizpurua, J</creator><creator>Sánchez-Portal, D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150513</creationdate><title>Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics</title><author>Barbry, M ; Koval, P ; Marchesin, F ; Esteban, R ; Borisov, A. G ; Aizpurua, J ; Sánchez-Portal, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-d9db0b3b683ad4d3fa076942de5b9602c21e6d87369fc89ac07c1415c4fca6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic beam spectroscopy</topic><topic>Mathematical analysis</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Plasmonics</topic><topic>Self-similarity</topic><topic>Sodium</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbry, M</creatorcontrib><creatorcontrib>Koval, P</creatorcontrib><creatorcontrib>Marchesin, F</creatorcontrib><creatorcontrib>Esteban, R</creatorcontrib><creatorcontrib>Borisov, A. G</creatorcontrib><creatorcontrib>Aizpurua, J</creatorcontrib><creatorcontrib>Sánchez-Portal, D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbry, M</au><au>Koval, P</au><au>Marchesin, F</au><au>Esteban, R</au><au>Borisov, A. G</au><au>Aizpurua, J</au><au>Sánchez-Portal, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-05-13</date><risdate>2015</risdate><volume>15</volume><issue>5</issue><spage>3410</spage><epage>3419</epage><pages>3410-3419</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Electromagnetic field localization in nanoantennas is one of the leitmotivs that drives the development of plasmonics. The near-fields in these plasmonic nanoantennas are commonly addressed theoretically within classical frameworks that neglect atomic-scale features. This approach is often appropriate since the irregularities produced at the atomic scale are typically hidden in far-field optical spectroscopies. However, a variety of physical and chemical processes rely on the fine distribution of the local fields at this ultraconfined scale. We use time-dependent density functional theory and perform atomistic quantum mechanical calculations of the optical response of plasmonic nanoparticles, and their dimers, characterized by the presence of crystallographic planes, facets, vertices, and steps. Using sodium clusters as an example, we show that the atomistic details of the nanoparticles morphologies determine the presence of subnanometric near-field hot spots that are further enhanced by the action of the underlying nanometric plasmonic fields. This situation is analogue to a self-similar nanoantenna cascade effect, scaled down to atomic dimensions, and it provides new insights into the limits of field enhancement and confinement, with important implications in the optical resolution of field-enhanced spectroscopies and microscopies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25915173</pmid><doi>10.1021/acs.nanolett.5b00759</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-05, Vol.15 (5), p.3410-3419
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762062822
source American Chemical Society Publications
subjects Atomic beam spectroscopy
Mathematical analysis
Nanoparticles
Nanostructure
Plasmonics
Self-similarity
Sodium
Spectroscopy
title Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A57%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomistic%20Near-Field%20Nanoplasmonics:%20Reaching%20Atomic-Scale%20Resolution%20in%20Nanooptics&rft.jtitle=Nano%20letters&rft.au=Barbry,%20M&rft.date=2015-05-13&rft.volume=15&rft.issue=5&rft.spage=3410&rft.epage=3419&rft.pages=3410-3419&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b00759&rft_dat=%3Cproquest_cross%3E1762062822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680955554&rft_id=info:pmid/25915173&rfr_iscdi=true