Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals

The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-01, Vol.8 (1), p.352-361
Hauptverfasser: Lambright, Scott, Butaeva, Evgeniia, Razgoniaeva, Natalia, Hopkins, Thomas, Smith, Bryan, Perera, Dimuthu, Corbin, Jonathan, Khon, Elena, Thomas, Rebekah, Moroz, Pavel, Mereshchenko, Andrey, Tarnovsky, Alexander, Zamkov, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 361
container_issue 1
container_start_page 352
container_title ACS nano
container_volume 8
creator Lambright, Scott
Butaeva, Evgeniia
Razgoniaeva, Natalia
Hopkins, Thomas
Smith, Bryan
Perera, Dimuthu
Corbin, Jonathan
Khon, Elena
Thomas, Rebekah
Moroz, Pavel
Mereshchenko, Andrey
Tarnovsky, Alexander
Zamkov, Mikhail
description The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a “backward” charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (τ ≈ 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase.
doi_str_mv 10.1021/nn404264w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762060397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492698933</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-f50befc232e09b17c4b72bc8887fa5d0b0f1860ba4f9b812f6d852707f9abb303</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMotlYX_gGZjaCL2ptMJo9lGeoDSl1Uwd2QZBI6pU3qZAbbf-9Ia1eCq-8uDofLQegawwMGgkfeU6CE0a8T1McyZUMQ7OP0eGe4hy5iXAJkXHB2jnqEpiRjkPXRdOIXyhtbJtPK2aZa2yS4ZLI1VRN8TCqfzIK3m6pR20qtknE7yst5kofajuYLu1olM-WDqXexUat4ic5cN_bqsAP0_jh5y5-H09enl3w8HSpKZTN0GWjrDEmJBakxN1Rzoo0QgjuVlaDBYcFAK-qkFpg4VoqMcOBOKq1TSAfobu_d1OGztbEp1lU03TfK29DGAnNGgEEq-f8olYRJIdO0Q-_3qKlDjLV1xaau1qreFRiKn87FsXPH3hy0rV7b8kj-hu2A2z2gTCyWoa19F-QP0TewXIM3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492698933</pqid></control><display><type>article</type><title>Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals</title><source>ACS Publications</source><creator>Lambright, Scott ; Butaeva, Evgeniia ; Razgoniaeva, Natalia ; Hopkins, Thomas ; Smith, Bryan ; Perera, Dimuthu ; Corbin, Jonathan ; Khon, Elena ; Thomas, Rebekah ; Moroz, Pavel ; Mereshchenko, Andrey ; Tarnovsky, Alexander ; Zamkov, Mikhail</creator><creatorcontrib>Lambright, Scott ; Butaeva, Evgeniia ; Razgoniaeva, Natalia ; Hopkins, Thomas ; Smith, Bryan ; Perera, Dimuthu ; Corbin, Jonathan ; Khon, Elena ; Thomas, Rebekah ; Moroz, Pavel ; Mereshchenko, Andrey ; Tarnovsky, Alexander ; Zamkov, Mikhail</creatorcontrib><description>The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a “backward” charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (τ ≈ 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn404264w</identifier><identifier>PMID: 24325605</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Defects ; Density ; Exchange ; Excitons ; Gold ; Nanoparticles ; Nanostructure ; Phases ; Semiconductors</subject><ispartof>ACS nano, 2014-01, Vol.8 (1), p.352-361</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-f50befc232e09b17c4b72bc8887fa5d0b0f1860ba4f9b812f6d852707f9abb303</citedby><cites>FETCH-LOGICAL-a449t-f50befc232e09b17c4b72bc8887fa5d0b0f1860ba4f9b812f6d852707f9abb303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn404264w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn404264w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24325605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambright, Scott</creatorcontrib><creatorcontrib>Butaeva, Evgeniia</creatorcontrib><creatorcontrib>Razgoniaeva, Natalia</creatorcontrib><creatorcontrib>Hopkins, Thomas</creatorcontrib><creatorcontrib>Smith, Bryan</creatorcontrib><creatorcontrib>Perera, Dimuthu</creatorcontrib><creatorcontrib>Corbin, Jonathan</creatorcontrib><creatorcontrib>Khon, Elena</creatorcontrib><creatorcontrib>Thomas, Rebekah</creatorcontrib><creatorcontrib>Moroz, Pavel</creatorcontrib><creatorcontrib>Mereshchenko, Andrey</creatorcontrib><creatorcontrib>Tarnovsky, Alexander</creatorcontrib><creatorcontrib>Zamkov, Mikhail</creatorcontrib><title>Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a “backward” charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (τ ≈ 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase.</description><subject>Defects</subject><subject>Density</subject><subject>Exchange</subject><subject>Excitons</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Phases</subject><subject>Semiconductors</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMotlYX_gGZjaCL2ptMJo9lGeoDSl1Uwd2QZBI6pU3qZAbbf-9Ia1eCq-8uDofLQegawwMGgkfeU6CE0a8T1McyZUMQ7OP0eGe4hy5iXAJkXHB2jnqEpiRjkPXRdOIXyhtbJtPK2aZa2yS4ZLI1VRN8TCqfzIK3m6pR20qtknE7yst5kofajuYLu1olM-WDqXexUat4ic5cN_bqsAP0_jh5y5-H09enl3w8HSpKZTN0GWjrDEmJBakxN1Rzoo0QgjuVlaDBYcFAK-qkFpg4VoqMcOBOKq1TSAfobu_d1OGztbEp1lU03TfK29DGAnNGgEEq-f8olYRJIdO0Q-_3qKlDjLV1xaau1qreFRiKn87FsXPH3hy0rV7b8kj-hu2A2z2gTCyWoa19F-QP0TewXIM3</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Lambright, Scott</creator><creator>Butaeva, Evgeniia</creator><creator>Razgoniaeva, Natalia</creator><creator>Hopkins, Thomas</creator><creator>Smith, Bryan</creator><creator>Perera, Dimuthu</creator><creator>Corbin, Jonathan</creator><creator>Khon, Elena</creator><creator>Thomas, Rebekah</creator><creator>Moroz, Pavel</creator><creator>Mereshchenko, Andrey</creator><creator>Tarnovsky, Alexander</creator><creator>Zamkov, Mikhail</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140128</creationdate><title>Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals</title><author>Lambright, Scott ; Butaeva, Evgeniia ; Razgoniaeva, Natalia ; Hopkins, Thomas ; Smith, Bryan ; Perera, Dimuthu ; Corbin, Jonathan ; Khon, Elena ; Thomas, Rebekah ; Moroz, Pavel ; Mereshchenko, Andrey ; Tarnovsky, Alexander ; Zamkov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-f50befc232e09b17c4b72bc8887fa5d0b0f1860ba4f9b812f6d852707f9abb303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Defects</topic><topic>Density</topic><topic>Exchange</topic><topic>Excitons</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Phases</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambright, Scott</creatorcontrib><creatorcontrib>Butaeva, Evgeniia</creatorcontrib><creatorcontrib>Razgoniaeva, Natalia</creatorcontrib><creatorcontrib>Hopkins, Thomas</creatorcontrib><creatorcontrib>Smith, Bryan</creatorcontrib><creatorcontrib>Perera, Dimuthu</creatorcontrib><creatorcontrib>Corbin, Jonathan</creatorcontrib><creatorcontrib>Khon, Elena</creatorcontrib><creatorcontrib>Thomas, Rebekah</creatorcontrib><creatorcontrib>Moroz, Pavel</creatorcontrib><creatorcontrib>Mereshchenko, Andrey</creatorcontrib><creatorcontrib>Tarnovsky, Alexander</creatorcontrib><creatorcontrib>Zamkov, Mikhail</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambright, Scott</au><au>Butaeva, Evgeniia</au><au>Razgoniaeva, Natalia</au><au>Hopkins, Thomas</au><au>Smith, Bryan</au><au>Perera, Dimuthu</au><au>Corbin, Jonathan</au><au>Khon, Elena</au><au>Thomas, Rebekah</au><au>Moroz, Pavel</au><au>Mereshchenko, Andrey</au><au>Tarnovsky, Alexander</au><au>Zamkov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-01-28</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>352</spage><epage>361</epage><pages>352-361</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a “backward” charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (τ ≈ 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24325605</pmid><doi>10.1021/nn404264w</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-01, Vol.8 (1), p.352-361
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762060397
source ACS Publications
subjects Defects
Density
Exchange
Excitons
Gold
Nanoparticles
Nanostructure
Phases
Semiconductors
title Enhanced Lifetime of Excitons in Nonepitaxial Au/CdS Core/Shell Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Lifetime%20of%20Excitons%20in%20Nonepitaxial%20Au/CdS%20Core/Shell%20Nanocrystals&rft.jtitle=ACS%20nano&rft.au=Lambright,%20Scott&rft.date=2014-01-28&rft.volume=8&rft.issue=1&rft.spage=352&rft.epage=361&rft.pages=352-361&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn404264w&rft_dat=%3Cproquest_cross%3E1492698933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492698933&rft_id=info:pmid/24325605&rfr_iscdi=true