Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics
Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclos...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-01, Vol.7 (1), p.556-565 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 565 |
---|---|
container_issue | 1 |
container_start_page | 556 |
container_title | ACS nano |
container_volume | 7 |
creator | Dabera, G. Dinesha M. R Jayawardena, K. D. G. Imalka Prabhath, M. R. Ranga Yahya, Iskandar Tan, Y. Yuan Nismy, N. Aamina Shiozawa, Hidetsugu Sauer, Markus Ruiz-Soria, G Ayala, Paola Stolojan, Vlad Adikaari, A. A. Damitha T Jarowski, Peter D Pichler, Thomas Silva, S. Ravi P |
description | Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm2) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics. |
doi_str_mv | 10.1021/nn304705t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1273774144</sourcerecordid><originalsourceid>FETCH-LOGICAL-a449t-bfda4aeaed88629b8a0351b0678a6969fd4409c48d400aa04ac6502d60b062b93</originalsourceid><addsrcrecordid>eNqF0DFPwzAQhmELgSgUBv4A8oIEQ-EcO3Y8oqpQpAoYQGJB0cVxIJDGYDtA_z1BLZ2QmO6GR9_wEnLA4JRBws7aloNQkMYNssM0lyPI5MPm-k_ZgOyG8AKQqkzJbTJIeMJFytUOeZwuCl-XdIy-cC29xtbFrrD02sZP518DxUAnVVWb2raRTl1j6eQrejSx7vkMF9YHWjlPb_wTtrWht88uug_XRKxN2CNbFTbB7q_ukNxfTO7G09Hs5vJqfD4boRA6joqqRIEWbZllMtFFhsBTVoBUGUotdVUKAdqIrBQAiCDQyBSSUkJvkkLzITle7r55997ZEPN5HYxtGmyt60LOlEwg1Zrz_2miuFKCCdHTkyU13oXgbZW_-XqOfpEzyH_C5-vwvT1czXbF3JZr-Vu6B0dLgCbkL67zbR_kj6FvtnaJtQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273774144</pqid></control><display><type>article</type><title>Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics</title><source>ACS Publications</source><source>MEDLINE</source><creator>Dabera, G. Dinesha M. R ; Jayawardena, K. D. G. Imalka ; Prabhath, M. R. Ranga ; Yahya, Iskandar ; Tan, Y. Yuan ; Nismy, N. Aamina ; Shiozawa, Hidetsugu ; Sauer, Markus ; Ruiz-Soria, G ; Ayala, Paola ; Stolojan, Vlad ; Adikaari, A. A. Damitha T ; Jarowski, Peter D ; Pichler, Thomas ; Silva, S. Ravi P</creator><creatorcontrib>Dabera, G. Dinesha M. R ; Jayawardena, K. D. G. Imalka ; Prabhath, M. R. Ranga ; Yahya, Iskandar ; Tan, Y. Yuan ; Nismy, N. Aamina ; Shiozawa, Hidetsugu ; Sauer, Markus ; Ruiz-Soria, G ; Ayala, Paola ; Stolojan, Vlad ; Adikaari, A. A. Damitha T ; Jarowski, Peter D ; Pichler, Thomas ; Silva, S. Ravi P</creatorcontrib><description>Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm2) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn304705t</identifier><identifier>PMID: 23234537</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon nanotubes ; Electric Power Supplies ; Electrical measurement ; Electrodes ; Electron Transport ; Electronics ; Equipment Design ; Equipment Failure Analysis ; Extraction ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - instrumentation ; Nanotubes, Carbon - chemistry ; Networks ; Organoselenium Compounds - chemistry ; Particle Size ; Photovoltaic cells ; Solar cells ; Solar Energy</subject><ispartof>ACS nano, 2013-01, Vol.7 (1), p.556-565</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a449t-bfda4aeaed88629b8a0351b0678a6969fd4409c48d400aa04ac6502d60b062b93</citedby><cites>FETCH-LOGICAL-a449t-bfda4aeaed88629b8a0351b0678a6969fd4409c48d400aa04ac6502d60b062b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn304705t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn304705t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23234537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dabera, G. Dinesha M. R</creatorcontrib><creatorcontrib>Jayawardena, K. D. G. Imalka</creatorcontrib><creatorcontrib>Prabhath, M. R. Ranga</creatorcontrib><creatorcontrib>Yahya, Iskandar</creatorcontrib><creatorcontrib>Tan, Y. Yuan</creatorcontrib><creatorcontrib>Nismy, N. Aamina</creatorcontrib><creatorcontrib>Shiozawa, Hidetsugu</creatorcontrib><creatorcontrib>Sauer, Markus</creatorcontrib><creatorcontrib>Ruiz-Soria, G</creatorcontrib><creatorcontrib>Ayala, Paola</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><creatorcontrib>Adikaari, A. A. Damitha T</creatorcontrib><creatorcontrib>Jarowski, Peter D</creatorcontrib><creatorcontrib>Pichler, Thomas</creatorcontrib><creatorcontrib>Silva, S. Ravi P</creatorcontrib><title>Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm2) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics.</description><subject>Carbon nanotubes</subject><subject>Electric Power Supplies</subject><subject>Electrical measurement</subject><subject>Electrodes</subject><subject>Electron Transport</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Extraction</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Networks</subject><subject>Organoselenium Compounds - chemistry</subject><subject>Particle Size</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solar Energy</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0DFPwzAQhmELgSgUBv4A8oIEQ-EcO3Y8oqpQpAoYQGJB0cVxIJDGYDtA_z1BLZ2QmO6GR9_wEnLA4JRBws7aloNQkMYNssM0lyPI5MPm-k_ZgOyG8AKQqkzJbTJIeMJFytUOeZwuCl-XdIy-cC29xtbFrrD02sZP518DxUAnVVWb2raRTl1j6eQrejSx7vkMF9YHWjlPb_wTtrWht88uug_XRKxN2CNbFTbB7q_ukNxfTO7G09Hs5vJqfD4boRA6joqqRIEWbZllMtFFhsBTVoBUGUotdVUKAdqIrBQAiCDQyBSSUkJvkkLzITle7r55997ZEPN5HYxtGmyt60LOlEwg1Zrz_2miuFKCCdHTkyU13oXgbZW_-XqOfpEzyH_C5-vwvT1czXbF3JZr-Vu6B0dLgCbkL67zbR_kj6FvtnaJtQ</recordid><startdate>20130122</startdate><enddate>20130122</enddate><creator>Dabera, G. Dinesha M. R</creator><creator>Jayawardena, K. D. G. Imalka</creator><creator>Prabhath, M. R. Ranga</creator><creator>Yahya, Iskandar</creator><creator>Tan, Y. Yuan</creator><creator>Nismy, N. Aamina</creator><creator>Shiozawa, Hidetsugu</creator><creator>Sauer, Markus</creator><creator>Ruiz-Soria, G</creator><creator>Ayala, Paola</creator><creator>Stolojan, Vlad</creator><creator>Adikaari, A. A. Damitha T</creator><creator>Jarowski, Peter D</creator><creator>Pichler, Thomas</creator><creator>Silva, S. Ravi P</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130122</creationdate><title>Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics</title><author>Dabera, G. Dinesha M. R ; Jayawardena, K. D. G. Imalka ; Prabhath, M. R. Ranga ; Yahya, Iskandar ; Tan, Y. Yuan ; Nismy, N. Aamina ; Shiozawa, Hidetsugu ; Sauer, Markus ; Ruiz-Soria, G ; Ayala, Paola ; Stolojan, Vlad ; Adikaari, A. A. Damitha T ; Jarowski, Peter D ; Pichler, Thomas ; Silva, S. Ravi P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a449t-bfda4aeaed88629b8a0351b0678a6969fd4409c48d400aa04ac6502d60b062b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carbon nanotubes</topic><topic>Electric Power Supplies</topic><topic>Electrical measurement</topic><topic>Electrodes</topic><topic>Electron Transport</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Extraction</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Networks</topic><topic>Organoselenium Compounds - chemistry</topic><topic>Particle Size</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solar Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dabera, G. Dinesha M. R</creatorcontrib><creatorcontrib>Jayawardena, K. D. G. Imalka</creatorcontrib><creatorcontrib>Prabhath, M. R. Ranga</creatorcontrib><creatorcontrib>Yahya, Iskandar</creatorcontrib><creatorcontrib>Tan, Y. Yuan</creatorcontrib><creatorcontrib>Nismy, N. Aamina</creatorcontrib><creatorcontrib>Shiozawa, Hidetsugu</creatorcontrib><creatorcontrib>Sauer, Markus</creatorcontrib><creatorcontrib>Ruiz-Soria, G</creatorcontrib><creatorcontrib>Ayala, Paola</creatorcontrib><creatorcontrib>Stolojan, Vlad</creatorcontrib><creatorcontrib>Adikaari, A. A. Damitha T</creatorcontrib><creatorcontrib>Jarowski, Peter D</creatorcontrib><creatorcontrib>Pichler, Thomas</creatorcontrib><creatorcontrib>Silva, S. Ravi P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabera, G. Dinesha M. R</au><au>Jayawardena, K. D. G. Imalka</au><au>Prabhath, M. R. Ranga</au><au>Yahya, Iskandar</au><au>Tan, Y. Yuan</au><au>Nismy, N. Aamina</au><au>Shiozawa, Hidetsugu</au><au>Sauer, Markus</au><au>Ruiz-Soria, G</au><au>Ayala, Paola</au><au>Stolojan, Vlad</au><au>Adikaari, A. A. Damitha T</au><au>Jarowski, Peter D</au><au>Pichler, Thomas</au><au>Silva, S. Ravi P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-01-22</date><risdate>2013</risdate><volume>7</volume><issue>1</issue><spage>556</spage><epage>565</epage><pages>556-565</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Transparent, highly percolated networks of regioregular poly(3-hexylthiophene) (rr-P3HT)-wrapped semiconducting single-walled carbon nanotubes (s-SWNTs) are deposited, and the charge transfer processes of these nanohybrids are studied using spectroscopic and electrical measurements. The data disclose hole doping of s-SWNTs by the polymer, challenging the prevalent electron-doping hypothesis. Through controlled fabrication, high- to low-density nanohybrid networks are achieved, with low-density hybrid carbon nanotube networks tested as hole transport layers (HTLs) for bulk heterojunction (BHJ) organic photovoltaics (OPV). OPVs incorporating these rr-P3HT/s-SWNT networks as the HTL demonstrate the best large area (70 mm2) carbon nanotube incorporated organic solar cells to date with a power conversion efficiency of 7.6%. This signifies the strong capability of nanohybrids as an efficient hole extraction layer, and we believe that dense nanohybrid networks have the potential to replace expensive and material scarce inorganic transparent electrodes in large area electronics toward the realization of low-cost flexible electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23234537</pmid><doi>10.1021/nn304705t</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-01, Vol.7 (1), p.556-565 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762059933 |
source | ACS Publications; MEDLINE |
subjects | Carbon nanotubes Electric Power Supplies Electrical measurement Electrodes Electron Transport Electronics Equipment Design Equipment Failure Analysis Extraction Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - instrumentation Nanotubes, Carbon - chemistry Networks Organoselenium Compounds - chemistry Particle Size Photovoltaic cells Solar cells Solar Energy |
title | Hybrid Carbon Nanotube Networks as Efficient Hole Extraction Layers for Organic Photovoltaics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T23%3A01%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Carbon%20Nanotube%20Networks%20as%20Efficient%20Hole%20Extraction%20Layers%20for%20Organic%20Photovoltaics&rft.jtitle=ACS%20nano&rft.au=Dabera,%20G.%20Dinesha%20M.%20R&rft.date=2013-01-22&rft.volume=7&rft.issue=1&rft.spage=556&rft.epage=565&rft.pages=556-565&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn304705t&rft_dat=%3Cproquest_cross%3E1273774144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273774144&rft_id=info:pmid/23234537&rfr_iscdi=true |