Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions
We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nan...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-04, Vol.7 (4), p.3713-3719 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3719 |
---|---|
container_issue | 4 |
container_start_page | 3713 |
container_title | ACS nano |
container_volume | 7 |
creator | Bai, Peng Zhu, Guang Lin, Zong-Hong Jing, Qingshen Chen, Jun Zhang, Gong Ma, Jusheng Wang, Zhong Lin |
description | We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics. |
doi_str_mv | 10.1021/nn4007708 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544010002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</originalsourceid><addsrcrecordid>eNqF0U9LwzAYBvAgis7pwS8gvQh6mL5p86c96phO2PSi4K2k2duZ0SYzaYV9eyPTnQQPIXnJj4eQh5AzCtcUUnpjLQOQEvI9MqBFJkaQi7f93ZnTI3IcwgqAy1yKQ3KUZixnTMKArB5th0uvOlwk877pTKM26OPw4k3lsEHdeaOTJ2XdEi1G6HxSxzVV_hNDZ-wyuTOuRf2urNGqSSZRLTdJ7V2bTPtW2WTuOuNsOCEHtWoCnv7sQ_J6P3kZT0ez54fH8e1spDKRdiMUSBnjOc-g4qmoVKozsShyUVRQQ8010xgnGe-E0JxJLhcsK2qlsALGRTYkl9vctXcffXxj2ZqgsWmURdeHkkqRAi8EZf9TzhhQAEj_pxnjHApKZaRXW6q9C8FjXa69aZXflBTK78LKXWHRnv_E9lWLi538bSiCiy1QOpQr13sb_-6PoC_MzZvC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1345509117</pqid></control><display><type>article</type><title>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bai, Peng ; Zhu, Guang ; Lin, Zong-Hong ; Jing, Qingshen ; Chen, Jun ; Zhang, Gong ; Ma, Jusheng ; Wang, Zhong Lin</creator><creatorcontrib>Bai, Peng ; Zhu, Guang ; Lin, Zong-Hong ; Jing, Qingshen ; Chen, Jun ; Zhang, Gong ; Ma, Jusheng ; Wang, Zhong Lin</creatorcontrib><description>We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn4007708</identifier><identifier>PMID: 23484470</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bioelectric Energy Sources ; Discomfort ; Electric potential ; Electronics ; Energy Transfer - physiology ; Equipment Design ; Equipment Failure Analysis ; Human body ; Human motion ; Humans ; Micro-Electrical-Mechanical Systems - instrumentation ; Movement - physiology ; Nanostructure ; Nanotechnology - instrumentation ; Three dimensional ; Transducers ; Walking ; Weight reduction</subject><ispartof>ACS nano, 2013-04, Vol.7 (4), p.3713-3719</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</citedby><cites>FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn4007708$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn4007708$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23484470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Lin, Zong-Hong</creatorcontrib><creatorcontrib>Jing, Qingshen</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Ma, Jusheng</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><title>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.</description><subject>Bioelectric Energy Sources</subject><subject>Discomfort</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Energy Transfer - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Human body</subject><subject>Human motion</subject><subject>Humans</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Movement - physiology</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Three dimensional</subject><subject>Transducers</subject><subject>Walking</subject><subject>Weight reduction</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9LwzAYBvAgis7pwS8gvQh6mL5p86c96phO2PSi4K2k2duZ0SYzaYV9eyPTnQQPIXnJj4eQh5AzCtcUUnpjLQOQEvI9MqBFJkaQi7f93ZnTI3IcwgqAy1yKQ3KUZixnTMKArB5th0uvOlwk877pTKM26OPw4k3lsEHdeaOTJ2XdEi1G6HxSxzVV_hNDZ-wyuTOuRf2urNGqSSZRLTdJ7V2bTPtW2WTuOuNsOCEHtWoCnv7sQ_J6P3kZT0ez54fH8e1spDKRdiMUSBnjOc-g4qmoVKozsShyUVRQQ8010xgnGe-E0JxJLhcsK2qlsALGRTYkl9vctXcffXxj2ZqgsWmURdeHkkqRAi8EZf9TzhhQAEj_pxnjHApKZaRXW6q9C8FjXa69aZXflBTK78LKXWHRnv_E9lWLi538bSiCiy1QOpQr13sb_-6PoC_MzZvC</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Bai, Peng</creator><creator>Zhu, Guang</creator><creator>Lin, Zong-Hong</creator><creator>Jing, Qingshen</creator><creator>Chen, Jun</creator><creator>Zhang, Gong</creator><creator>Ma, Jusheng</creator><creator>Wang, Zhong Lin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130423</creationdate><title>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</title><author>Bai, Peng ; Zhu, Guang ; Lin, Zong-Hong ; Jing, Qingshen ; Chen, Jun ; Zhang, Gong ; Ma, Jusheng ; Wang, Zhong Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioelectric Energy Sources</topic><topic>Discomfort</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Energy Transfer - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Human body</topic><topic>Human motion</topic><topic>Humans</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Movement - physiology</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Three dimensional</topic><topic>Transducers</topic><topic>Walking</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Lin, Zong-Hong</creatorcontrib><creatorcontrib>Jing, Qingshen</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Ma, Jusheng</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Peng</au><au>Zhu, Guang</au><au>Lin, Zong-Hong</au><au>Jing, Qingshen</au><au>Chen, Jun</au><au>Zhang, Gong</au><au>Ma, Jusheng</au><au>Wang, Zhong Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>3713</spage><epage>3719</epage><pages>3713-3719</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23484470</pmid><doi>10.1021/nn4007708</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-04, Vol.7 (4), p.3713-3719 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762059614 |
source | ACS Publications; MEDLINE |
subjects | Bioelectric Energy Sources Discomfort Electric potential Electronics Energy Transfer - physiology Equipment Design Equipment Failure Analysis Human body Human motion Humans Micro-Electrical-Mechanical Systems - instrumentation Movement - physiology Nanostructure Nanotechnology - instrumentation Three dimensional Transducers Walking Weight reduction |
title | Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Multilayered%20Triboelectric%20Nanogenerator%20for%20Harvesting%20Biomechanical%20Energy%20from%20Human%20Motions&rft.jtitle=ACS%20nano&rft.au=Bai,%20Peng&rft.date=2013-04-23&rft.volume=7&rft.issue=4&rft.spage=3713&rft.epage=3719&rft.pages=3713-3719&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn4007708&rft_dat=%3Cproquest_cross%3E1544010002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1345509117&rft_id=info:pmid/23484470&rfr_iscdi=true |