Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions

We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-04, Vol.7 (4), p.3713-3719
Hauptverfasser: Bai, Peng, Zhu, Guang, Lin, Zong-Hong, Jing, Qingshen, Chen, Jun, Zhang, Gong, Ma, Jusheng, Wang, Zhong Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3719
container_issue 4
container_start_page 3713
container_title ACS nano
container_volume 7
creator Bai, Peng
Zhu, Guang
Lin, Zong-Hong
Jing, Qingshen
Chen, Jun
Zhang, Gong
Ma, Jusheng
Wang, Zhong Lin
description We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.
doi_str_mv 10.1021/nn4007708
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1544010002</sourcerecordid><originalsourceid>FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</originalsourceid><addsrcrecordid>eNqF0U9LwzAYBvAgis7pwS8gvQh6mL5p86c96phO2PSi4K2k2duZ0SYzaYV9eyPTnQQPIXnJj4eQh5AzCtcUUnpjLQOQEvI9MqBFJkaQi7f93ZnTI3IcwgqAy1yKQ3KUZixnTMKArB5th0uvOlwk877pTKM26OPw4k3lsEHdeaOTJ2XdEi1G6HxSxzVV_hNDZ-wyuTOuRf2urNGqSSZRLTdJ7V2bTPtW2WTuOuNsOCEHtWoCnv7sQ_J6P3kZT0ez54fH8e1spDKRdiMUSBnjOc-g4qmoVKozsShyUVRQQ8010xgnGe-E0JxJLhcsK2qlsALGRTYkl9vctXcffXxj2ZqgsWmURdeHkkqRAi8EZf9TzhhQAEj_pxnjHApKZaRXW6q9C8FjXa69aZXflBTK78LKXWHRnv_E9lWLi538bSiCiy1QOpQr13sb_-6PoC_MzZvC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1345509117</pqid></control><display><type>article</type><title>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bai, Peng ; Zhu, Guang ; Lin, Zong-Hong ; Jing, Qingshen ; Chen, Jun ; Zhang, Gong ; Ma, Jusheng ; Wang, Zhong Lin</creator><creatorcontrib>Bai, Peng ; Zhu, Guang ; Lin, Zong-Hong ; Jing, Qingshen ; Chen, Jun ; Zhang, Gong ; Ma, Jusheng ; Wang, Zhong Lin</creatorcontrib><description>We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn4007708</identifier><identifier>PMID: 23484470</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bioelectric Energy Sources ; Discomfort ; Electric potential ; Electronics ; Energy Transfer - physiology ; Equipment Design ; Equipment Failure Analysis ; Human body ; Human motion ; Humans ; Micro-Electrical-Mechanical Systems - instrumentation ; Movement - physiology ; Nanostructure ; Nanotechnology - instrumentation ; Three dimensional ; Transducers ; Walking ; Weight reduction</subject><ispartof>ACS nano, 2013-04, Vol.7 (4), p.3713-3719</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</citedby><cites>FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn4007708$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn4007708$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23484470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Lin, Zong-Hong</creatorcontrib><creatorcontrib>Jing, Qingshen</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Ma, Jusheng</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><title>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.</description><subject>Bioelectric Energy Sources</subject><subject>Discomfort</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Energy Transfer - physiology</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Human body</subject><subject>Human motion</subject><subject>Humans</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Movement - physiology</subject><subject>Nanostructure</subject><subject>Nanotechnology - instrumentation</subject><subject>Three dimensional</subject><subject>Transducers</subject><subject>Walking</subject><subject>Weight reduction</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U9LwzAYBvAgis7pwS8gvQh6mL5p86c96phO2PSi4K2k2duZ0SYzaYV9eyPTnQQPIXnJj4eQh5AzCtcUUnpjLQOQEvI9MqBFJkaQi7f93ZnTI3IcwgqAy1yKQ3KUZixnTMKArB5th0uvOlwk877pTKM26OPw4k3lsEHdeaOTJ2XdEi1G6HxSxzVV_hNDZ-wyuTOuRf2urNGqSSZRLTdJ7V2bTPtW2WTuOuNsOCEHtWoCnv7sQ_J6P3kZT0ez54fH8e1spDKRdiMUSBnjOc-g4qmoVKozsShyUVRQQ8010xgnGe-E0JxJLhcsK2qlsALGRTYkl9vctXcffXxj2ZqgsWmURdeHkkqRAi8EZf9TzhhQAEj_pxnjHApKZaRXW6q9C8FjXa69aZXflBTK78LKXWHRnv_E9lWLi538bSiCiy1QOpQr13sb_-6PoC_MzZvC</recordid><startdate>20130423</startdate><enddate>20130423</enddate><creator>Bai, Peng</creator><creator>Zhu, Guang</creator><creator>Lin, Zong-Hong</creator><creator>Jing, Qingshen</creator><creator>Chen, Jun</creator><creator>Zhang, Gong</creator><creator>Ma, Jusheng</creator><creator>Wang, Zhong Lin</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130423</creationdate><title>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</title><author>Bai, Peng ; Zhu, Guang ; Lin, Zong-Hong ; Jing, Qingshen ; Chen, Jun ; Zhang, Gong ; Ma, Jusheng ; Wang, Zhong Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a362t-e6e14458530b526ba2c36d9869b0f0f5c4ce986752666c54757d439faaeb04563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioelectric Energy Sources</topic><topic>Discomfort</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Energy Transfer - physiology</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Human body</topic><topic>Human motion</topic><topic>Humans</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Movement - physiology</topic><topic>Nanostructure</topic><topic>Nanotechnology - instrumentation</topic><topic>Three dimensional</topic><topic>Transducers</topic><topic>Walking</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Peng</creatorcontrib><creatorcontrib>Zhu, Guang</creatorcontrib><creatorcontrib>Lin, Zong-Hong</creatorcontrib><creatorcontrib>Jing, Qingshen</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Zhang, Gong</creatorcontrib><creatorcontrib>Ma, Jusheng</creatorcontrib><creatorcontrib>Wang, Zhong Lin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Peng</au><au>Zhu, Guang</au><au>Lin, Zong-Hong</au><au>Jing, Qingshen</au><au>Chen, Jun</au><au>Zhang, Gong</au><au>Ma, Jusheng</au><au>Wang, Zhong Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-04-23</date><risdate>2013</risdate><volume>7</volume><issue>4</issue><spage>3713</spage><epage>3719</epage><pages>3713-3719</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We demonstrate a new flexible multilayered triboelectric nanogenerator (TENG) with extremely low cost, simple structure, small size (3.8 cm × 3.8 cm × 0.95 cm) and lightweight (7 g) by innovatively integrating five layers of units on a single flexible substrate. Owing to the unique structure and nanopore-based surface modification on the metal surface, the instantaneous short-circuit current (I sc) and the open-circuit voltage (V oc) could reach 0.66 mA and 215 V with an instantaneous maximum power density of 9.8 mW/cm2 and 10.24 mW/cm3. This is the first 3D integrated TENG for enhancing the output power. Triggered by press from normal walking, the TENG attached onto a shoe pad was able to instantaneously drive multiple commercial LED bulbs. With the flexible structure, the TENG can be further integrated into clothes or even attached onto human body without introducing sensible obstruction and discomfort to human motions. The novel design of TENG demonstrated here can be applied to potentially achieve self-powered portable electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23484470</pmid><doi>10.1021/nn4007708</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-04, Vol.7 (4), p.3713-3719
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762059614
source ACS Publications; MEDLINE
subjects Bioelectric Energy Sources
Discomfort
Electric potential
Electronics
Energy Transfer - physiology
Equipment Design
Equipment Failure Analysis
Human body
Human motion
Humans
Micro-Electrical-Mechanical Systems - instrumentation
Movement - physiology
Nanostructure
Nanotechnology - instrumentation
Three dimensional
Transducers
Walking
Weight reduction
title Integrated Multilayered Triboelectric Nanogenerator for Harvesting Biomechanical Energy from Human Motions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Multilayered%20Triboelectric%20Nanogenerator%20for%20Harvesting%20Biomechanical%20Energy%20from%20Human%20Motions&rft.jtitle=ACS%20nano&rft.au=Bai,%20Peng&rft.date=2013-04-23&rft.volume=7&rft.issue=4&rft.spage=3713&rft.epage=3719&rft.pages=3713-3719&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn4007708&rft_dat=%3Cproquest_cross%3E1544010002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1345509117&rft_id=info:pmid/23484470&rfr_iscdi=true