Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors

With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-07, Vol.7 (7), p.5850-5857
Hauptverfasser: Kim, Young Duck, Bae, Myung-Ho, Seo, Jung-Tak, Kim, Yong Seung, Kim, Hakseong, Lee, Jae Hong, Ahn, Joung Real, Lee, Sang Wook, Chun, Seung-Hyun, Park, Yun Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5857
container_issue 7
container_start_page 5850
container_title ACS nano
container_volume 7
creator Kim, Young Duck
Bae, Myung-Ho
Seo, Jung-Tak
Kim, Yong Seung
Kim, Hakseong
Lee, Jae Hong
Ahn, Joung Real
Lee, Sang Wook
Chun, Seung-Hyun
Park, Yun Daniel
description With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.
doi_str_mv 10.1021/nn402354j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412156330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</originalsourceid><addsrcrecordid>eNqF0L1OwzAUhmELgSgUBm4AZUGCIWAfx3YyoqotVJVYisQW-VekSp1gJwMb98AdciUEtXRCYjpnePQNL0IXBN8SDOTO-wwDZdn6AJ2QgvIU5_zlcP8zMkKnMa4xZiIX_BiNgIocCIcTtJg1uo_WpEsZbUinXqramqT9-vj0yaL3uqsaH5PKJ_Mg21frbTKrbG3SqXNWd8kqSB-r2DUhnqEjJ-toz3d3jJ5n09XkIV0-zR8n98tU0izv0rxgmJqMO42pzJWxwAwhOVVGUMiMpoIBAUqZ4aIgqpAKCgMFduA0KOXoGF1vd9vQvPU2duWmitrWtfS26WNJBAfMCsbF_zQjQBinFA_0Zkt1aGIM1pVtqDYyvJcElz-Vy33lwV7uZnu1sWYvf7MO4GoLpI7luumDH4L8MfQNRdeCzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412156330</pqid></control><display><type>article</type><title>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kim, Young Duck ; Bae, Myung-Ho ; Seo, Jung-Tak ; Kim, Yong Seung ; Kim, Hakseong ; Lee, Jae Hong ; Ahn, Joung Real ; Lee, Sang Wook ; Chun, Seung-Hyun ; Park, Yun Daniel</creator><creatorcontrib>Kim, Young Duck ; Bae, Myung-Ho ; Seo, Jung-Tak ; Kim, Yong Seung ; Kim, Hakseong ; Lee, Jae Hong ; Ahn, Joung Real ; Lee, Sang Wook ; Chun, Seung-Hyun ; Park, Yun Daniel</creatorcontrib><description>With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn402354j</identifier><identifier>PMID: 23782162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carrier density ; Charge ; Devices ; Doping ; Electric charge ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Graphene ; Graphite - chemistry ; Graphite - radiation effects ; Irradiation ; Lasers ; Materials Testing ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Particle Size ; Photocurrent ; Photoelectric effect ; Surface Properties - radiation effects ; Transistors, Electronic</subject><ispartof>ACS nano, 2013-07, Vol.7 (7), p.5850-5857</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</citedby><cites>FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn402354j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn402354j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23782162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Bae, Myung-Ho</creatorcontrib><creatorcontrib>Seo, Jung-Tak</creatorcontrib><creatorcontrib>Kim, Yong Seung</creatorcontrib><creatorcontrib>Kim, Hakseong</creatorcontrib><creatorcontrib>Lee, Jae Hong</creatorcontrib><creatorcontrib>Ahn, Joung Real</creatorcontrib><creatorcontrib>Lee, Sang Wook</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><title>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.</description><subject>Carrier density</subject><subject>Charge</subject><subject>Devices</subject><subject>Doping</subject><subject>Electric charge</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Graphite - radiation effects</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Materials Testing</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Surface Properties - radiation effects</subject><subject>Transistors, Electronic</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0L1OwzAUhmELgSgUBm4AZUGCIWAfx3YyoqotVJVYisQW-VekSp1gJwMb98AdciUEtXRCYjpnePQNL0IXBN8SDOTO-wwDZdn6AJ2QgvIU5_zlcP8zMkKnMa4xZiIX_BiNgIocCIcTtJg1uo_WpEsZbUinXqramqT9-vj0yaL3uqsaH5PKJ_Mg21frbTKrbG3SqXNWd8kqSB-r2DUhnqEjJ-toz3d3jJ5n09XkIV0-zR8n98tU0izv0rxgmJqMO42pzJWxwAwhOVVGUMiMpoIBAUqZ4aIgqpAKCgMFduA0KOXoGF1vd9vQvPU2duWmitrWtfS26WNJBAfMCsbF_zQjQBinFA_0Zkt1aGIM1pVtqDYyvJcElz-Vy33lwV7uZnu1sWYvf7MO4GoLpI7luumDH4L8MfQNRdeCzA</recordid><startdate>20130723</startdate><enddate>20130723</enddate><creator>Kim, Young Duck</creator><creator>Bae, Myung-Ho</creator><creator>Seo, Jung-Tak</creator><creator>Kim, Yong Seung</creator><creator>Kim, Hakseong</creator><creator>Lee, Jae Hong</creator><creator>Ahn, Joung Real</creator><creator>Lee, Sang Wook</creator><creator>Chun, Seung-Hyun</creator><creator>Park, Yun Daniel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130723</creationdate><title>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</title><author>Kim, Young Duck ; Bae, Myung-Ho ; Seo, Jung-Tak ; Kim, Yong Seung ; Kim, Hakseong ; Lee, Jae Hong ; Ahn, Joung Real ; Lee, Sang Wook ; Chun, Seung-Hyun ; Park, Yun Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carrier density</topic><topic>Charge</topic><topic>Devices</topic><topic>Doping</topic><topic>Electric charge</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Graphite - radiation effects</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Materials Testing</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Surface Properties - radiation effects</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Bae, Myung-Ho</creatorcontrib><creatorcontrib>Seo, Jung-Tak</creatorcontrib><creatorcontrib>Kim, Yong Seung</creatorcontrib><creatorcontrib>Kim, Hakseong</creatorcontrib><creatorcontrib>Lee, Jae Hong</creatorcontrib><creatorcontrib>Ahn, Joung Real</creatorcontrib><creatorcontrib>Lee, Sang Wook</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young Duck</au><au>Bae, Myung-Ho</au><au>Seo, Jung-Tak</au><au>Kim, Yong Seung</au><au>Kim, Hakseong</au><au>Lee, Jae Hong</au><au>Ahn, Joung Real</au><au>Lee, Sang Wook</au><au>Chun, Seung-Hyun</au><au>Park, Yun Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-07-23</date><risdate>2013</risdate><volume>7</volume><issue>7</issue><spage>5850</spage><epage>5857</epage><pages>5850-5857</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23782162</pmid><doi>10.1021/nn402354j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-07, Vol.7 (7), p.5850-5857
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762059567
source MEDLINE; ACS Publications
subjects Carrier density
Charge
Devices
Doping
Electric charge
Electrodes
Equipment Design
Equipment Failure Analysis
Graphene
Graphite - chemistry
Graphite - radiation effects
Irradiation
Lasers
Materials Testing
Nanostructures - chemistry
Nanostructures - radiation effects
Nanostructures - ultrastructure
Particle Size
Photocurrent
Photoelectric effect
Surface Properties - radiation effects
Transistors, Electronic
title Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Focused-Laser-Enabled%20p%E2%80%93n%20Junctions%20in%20Graphene%20Field-Effect%20Transistors&rft.jtitle=ACS%20nano&rft.au=Kim,%20Young%20Duck&rft.date=2013-07-23&rft.volume=7&rft.issue=7&rft.spage=5850&rft.epage=5857&rft.pages=5850-5857&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn402354j&rft_dat=%3Cproquest_cross%3E1412156330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412156330&rft_id=info:pmid/23782162&rfr_iscdi=true