Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors
With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graph...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-07, Vol.7 (7), p.5850-5857 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5857 |
---|---|
container_issue | 7 |
container_start_page | 5850 |
container_title | ACS nano |
container_volume | 7 |
creator | Kim, Young Duck Bae, Myung-Ho Seo, Jung-Tak Kim, Yong Seung Kim, Hakseong Lee, Jae Hong Ahn, Joung Real Lee, Sang Wook Chun, Seung-Hyun Park, Yun Daniel |
description | With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices. |
doi_str_mv | 10.1021/nn402354j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762059567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412156330</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</originalsourceid><addsrcrecordid>eNqF0L1OwzAUhmELgSgUBm4AZUGCIWAfx3YyoqotVJVYisQW-VekSp1gJwMb98AdciUEtXRCYjpnePQNL0IXBN8SDOTO-wwDZdn6AJ2QgvIU5_zlcP8zMkKnMa4xZiIX_BiNgIocCIcTtJg1uo_WpEsZbUinXqramqT9-vj0yaL3uqsaH5PKJ_Mg21frbTKrbG3SqXNWd8kqSB-r2DUhnqEjJ-toz3d3jJ5n09XkIV0-zR8n98tU0izv0rxgmJqMO42pzJWxwAwhOVVGUMiMpoIBAUqZ4aIgqpAKCgMFduA0KOXoGF1vd9vQvPU2duWmitrWtfS26WNJBAfMCsbF_zQjQBinFA_0Zkt1aGIM1pVtqDYyvJcElz-Vy33lwV7uZnu1sWYvf7MO4GoLpI7luumDH4L8MfQNRdeCzA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412156330</pqid></control><display><type>article</type><title>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kim, Young Duck ; Bae, Myung-Ho ; Seo, Jung-Tak ; Kim, Yong Seung ; Kim, Hakseong ; Lee, Jae Hong ; Ahn, Joung Real ; Lee, Sang Wook ; Chun, Seung-Hyun ; Park, Yun Daniel</creator><creatorcontrib>Kim, Young Duck ; Bae, Myung-Ho ; Seo, Jung-Tak ; Kim, Yong Seung ; Kim, Hakseong ; Lee, Jae Hong ; Ahn, Joung Real ; Lee, Sang Wook ; Chun, Seung-Hyun ; Park, Yun Daniel</creatorcontrib><description>With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn402354j</identifier><identifier>PMID: 23782162</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carrier density ; Charge ; Devices ; Doping ; Electric charge ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Graphene ; Graphite - chemistry ; Graphite - radiation effects ; Irradiation ; Lasers ; Materials Testing ; Nanostructures - chemistry ; Nanostructures - radiation effects ; Nanostructures - ultrastructure ; Particle Size ; Photocurrent ; Photoelectric effect ; Surface Properties - radiation effects ; Transistors, Electronic</subject><ispartof>ACS nano, 2013-07, Vol.7 (7), p.5850-5857</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</citedby><cites>FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn402354j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn402354j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23782162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Bae, Myung-Ho</creatorcontrib><creatorcontrib>Seo, Jung-Tak</creatorcontrib><creatorcontrib>Kim, Yong Seung</creatorcontrib><creatorcontrib>Kim, Hakseong</creatorcontrib><creatorcontrib>Lee, Jae Hong</creatorcontrib><creatorcontrib>Ahn, Joung Real</creatorcontrib><creatorcontrib>Lee, Sang Wook</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><title>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.</description><subject>Carrier density</subject><subject>Charge</subject><subject>Devices</subject><subject>Doping</subject><subject>Electric charge</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Graphite - radiation effects</subject><subject>Irradiation</subject><subject>Lasers</subject><subject>Materials Testing</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - radiation effects</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Photocurrent</subject><subject>Photoelectric effect</subject><subject>Surface Properties - radiation effects</subject><subject>Transistors, Electronic</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0L1OwzAUhmELgSgUBm4AZUGCIWAfx3YyoqotVJVYisQW-VekSp1gJwMb98AdciUEtXRCYjpnePQNL0IXBN8SDOTO-wwDZdn6AJ2QgvIU5_zlcP8zMkKnMa4xZiIX_BiNgIocCIcTtJg1uo_WpEsZbUinXqramqT9-vj0yaL3uqsaH5PKJ_Mg21frbTKrbG3SqXNWd8kqSB-r2DUhnqEjJ-toz3d3jJ5n09XkIV0-zR8n98tU0izv0rxgmJqMO42pzJWxwAwhOVVGUMiMpoIBAUqZ4aIgqpAKCgMFduA0KOXoGF1vd9vQvPU2duWmitrWtfS26WNJBAfMCsbF_zQjQBinFA_0Zkt1aGIM1pVtqDYyvJcElz-Vy33lwV7uZnu1sWYvf7MO4GoLpI7luumDH4L8MfQNRdeCzA</recordid><startdate>20130723</startdate><enddate>20130723</enddate><creator>Kim, Young Duck</creator><creator>Bae, Myung-Ho</creator><creator>Seo, Jung-Tak</creator><creator>Kim, Yong Seung</creator><creator>Kim, Hakseong</creator><creator>Lee, Jae Hong</creator><creator>Ahn, Joung Real</creator><creator>Lee, Sang Wook</creator><creator>Chun, Seung-Hyun</creator><creator>Park, Yun Daniel</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130723</creationdate><title>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</title><author>Kim, Young Duck ; Bae, Myung-Ho ; Seo, Jung-Tak ; Kim, Yong Seung ; Kim, Hakseong ; Lee, Jae Hong ; Ahn, Joung Real ; Lee, Sang Wook ; Chun, Seung-Hyun ; Park, Yun Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-89503d46fc03a8bde25d1183bd7324dc375212335d6791b9ab29d290f2fc2bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Carrier density</topic><topic>Charge</topic><topic>Devices</topic><topic>Doping</topic><topic>Electric charge</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Graphite - radiation effects</topic><topic>Irradiation</topic><topic>Lasers</topic><topic>Materials Testing</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - radiation effects</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Photocurrent</topic><topic>Photoelectric effect</topic><topic>Surface Properties - radiation effects</topic><topic>Transistors, Electronic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Young Duck</creatorcontrib><creatorcontrib>Bae, Myung-Ho</creatorcontrib><creatorcontrib>Seo, Jung-Tak</creatorcontrib><creatorcontrib>Kim, Yong Seung</creatorcontrib><creatorcontrib>Kim, Hakseong</creatorcontrib><creatorcontrib>Lee, Jae Hong</creatorcontrib><creatorcontrib>Ahn, Joung Real</creatorcontrib><creatorcontrib>Lee, Sang Wook</creatorcontrib><creatorcontrib>Chun, Seung-Hyun</creatorcontrib><creatorcontrib>Park, Yun Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Young Duck</au><au>Bae, Myung-Ho</au><au>Seo, Jung-Tak</au><au>Kim, Yong Seung</au><au>Kim, Hakseong</au><au>Lee, Jae Hong</au><au>Ahn, Joung Real</au><au>Lee, Sang Wook</au><au>Chun, Seung-Hyun</au><au>Park, Yun Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-07-23</date><risdate>2013</risdate><volume>7</volume><issue>7</issue><spage>5850</spage><epage>5857</epage><pages>5850-5857</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>With its electrical carrier type as well as carrier densities highly sensitive to light, graphene is potentially an ideal candidate for many optoelectronic applications. Beyond the direct light–graphene interactions, indirect effects arising from induced charge traps underneath the photoactive graphene arising from light–substrate interactions must be better understood and harnessed. Here, we study the local doping effect in graphene using focused-laser irradiation, which governs the trapping and ejecting behavior of the charge trap sites in the gate oxide. The local doping effect in graphene is manifested by large Dirac voltage shifts and/or double Dirac peaks from the electrical measurements and a strong photocurrent response due to the formation of a p–n–p junction in gate-dependent scanning photocurrent microscopy. The technique of focused-laser irradiation on a graphene device suggests a new method to control the charge-carrier type and carrier concentration in graphene in a nonintrusive manner as well as elucidate strong light–substrate interactions in the ultimate performance of graphene devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23782162</pmid><doi>10.1021/nn402354j</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-07, Vol.7 (7), p.5850-5857 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762059567 |
source | MEDLINE; ACS Publications |
subjects | Carrier density Charge Devices Doping Electric charge Electrodes Equipment Design Equipment Failure Analysis Graphene Graphite - chemistry Graphite - radiation effects Irradiation Lasers Materials Testing Nanostructures - chemistry Nanostructures - radiation effects Nanostructures - ultrastructure Particle Size Photocurrent Photoelectric effect Surface Properties - radiation effects Transistors, Electronic |
title | Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Focused-Laser-Enabled%20p%E2%80%93n%20Junctions%20in%20Graphene%20Field-Effect%20Transistors&rft.jtitle=ACS%20nano&rft.au=Kim,%20Young%20Duck&rft.date=2013-07-23&rft.volume=7&rft.issue=7&rft.spage=5850&rft.epage=5857&rft.pages=5850-5857&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn402354j&rft_dat=%3Cproquest_cross%3E1412156330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412156330&rft_id=info:pmid/23782162&rfr_iscdi=true |