Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer
Single-cell impedance cytometry is an electrical analysis method, which has been used to count and discriminate cells on the basis of their dielectric properties. The method has several advantages, such as being label free and requiring minimal sample preparation. So far, however, it has been limite...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2014-01, Vol.14 (2), p.369-377 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-cell impedance cytometry is an electrical analysis method, which has been used to count and discriminate cells on the basis of their dielectric properties. The method has several advantages, such as being label free and requiring minimal sample preparation. So far, however, it has been limited to measuring cell properties that are visible at low frequencies, such as size and membrane capacitance. We demonstrate a microfluidic single cell impedance cytometer capable of dielectric characterization of single cells at frequencies up to 500 MHz. This device features a more than ten-fold increased frequency range compared to other devices and enables the study of both low and high frequency dielectric properties in parallel. The increased frequency range potentially allows for characterization of subcellular features in addition to the properties that are visible at lower frequencies. The capabilities of the cytometer are demonstrated by discriminating wild-type yeast from a mutant, which differs in size and distribution of vacuoles in the intracellular fluid. This discrimination is based on the differences in dielectric properties at frequencies around 250 MHz. The results are compared to a 3D finite-element model of the microfluidic channel accommodating either a wild-type or a mutant yeast cell. The model is used to derive quantitative values to characterize the dielectric properties of the cells. |
---|---|
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c3lc50866h |