Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals

Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2015-08, Vol.15 (8), p.5229-5234
Hauptverfasser: Mi, Xue-Ya, Yu, Xiaoxiang, Yao, Kai-Lun, Huang, Xiaoming, Yang, Nuo, Lü, Jing-Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5234
container_issue 8
container_start_page 5229
container_title Nano letters
container_volume 15
creator Mi, Xue-Ya
Yu, Xiaoxiang
Yao, Kai-Lun
Huang, Xiaoming
Yang, Nuo
Lü, Jing-Tao
description Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis­(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.
doi_str_mv 10.1021/acs.nanolett.5b01491
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762058397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762058397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EouXjHyDkkSXlHMeJPaLSFqQiGMocOY7TGiV2sR2h_ntStTAiprvhee909yB0Q2BCICX3UoWJlda1OsYJq4BkgpygMWEUklyI9PS359kIXYTwAQCCMjhHozQnjIAgY9TN7EZaZewax43Gq432ndOtVtEbhedm3XuNXYNftDcRVzu8dF_Jo-m0DcZZ2eLZkR3alZc2bJ2P2Fj8tnHW2WTRyhDw1O9ClG24QmfNUPT1sV6i9_lsNX1Klq-L5-nDMpGZoDHhlNVK5IoXNeOsSRk0w3WUcK0qUomcAWtIKus61yxrJC1qDrnMSSMyzoEAvUR3h7lb7z57HWLZmaB020qrXR9KUuQpME5F8Q8UaJECBz6g2QFV3oXgdVNuvemk35UEyr2TcnBS_jgpj06G2O1xQ191uv4N_UgYADgA-_iH6_3w1_D3zG87npvC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703720808</pqid></control><display><type>article</type><title>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</title><source>ACS Publications</source><creator>Mi, Xue-Ya ; Yu, Xiaoxiang ; Yao, Kai-Lun ; Huang, Xiaoming ; Yang, Nuo ; Lü, Jing-Tao</creator><creatorcontrib>Mi, Xue-Ya ; Yu, Xiaoxiang ; Yao, Kai-Lun ; Huang, Xiaoming ; Yang, Nuo ; Lü, Jing-Tao</creatorcontrib><description>Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis­(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b01491</identifier><identifier>PMID: 26151091</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystal structure ; Electronic structure ; Electronics ; Figure of merit ; Molecular dynamics ; Phonons ; Thermoelectricity ; Transport</subject><ispartof>Nano letters, 2015-08, Vol.15 (8), p.5229-5234</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</citedby><cites>FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b01491$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b01491$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26151091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Xue-Ya</creatorcontrib><creatorcontrib>Yu, Xiaoxiang</creatorcontrib><creatorcontrib>Yao, Kai-Lun</creatorcontrib><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Yang, Nuo</creatorcontrib><creatorcontrib>Lü, Jing-Tao</creatorcontrib><title>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis­(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.</description><subject>Crystal structure</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Figure of merit</subject><subject>Molecular dynamics</subject><subject>Phonons</subject><subject>Thermoelectricity</subject><subject>Transport</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAQhi0EouXjHyDkkSXlHMeJPaLSFqQiGMocOY7TGiV2sR2h_ntStTAiprvhee909yB0Q2BCICX3UoWJlda1OsYJq4BkgpygMWEUklyI9PS359kIXYTwAQCCMjhHozQnjIAgY9TN7EZaZewax43Gq432ndOtVtEbhedm3XuNXYNftDcRVzu8dF_Jo-m0DcZZ2eLZkR3alZc2bJ2P2Fj8tnHW2WTRyhDw1O9ClG24QmfNUPT1sV6i9_lsNX1Klq-L5-nDMpGZoDHhlNVK5IoXNeOsSRk0w3WUcK0qUomcAWtIKus61yxrJC1qDrnMSSMyzoEAvUR3h7lb7z57HWLZmaB020qrXR9KUuQpME5F8Q8UaJECBz6g2QFV3oXgdVNuvemk35UEyr2TcnBS_jgpj06G2O1xQ191uv4N_UgYADgA-_iH6_3w1_D3zG87npvC</recordid><startdate>20150812</startdate><enddate>20150812</enddate><creator>Mi, Xue-Ya</creator><creator>Yu, Xiaoxiang</creator><creator>Yao, Kai-Lun</creator><creator>Huang, Xiaoming</creator><creator>Yang, Nuo</creator><creator>Lü, Jing-Tao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150812</creationdate><title>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</title><author>Mi, Xue-Ya ; Yu, Xiaoxiang ; Yao, Kai-Lun ; Huang, Xiaoming ; Yang, Nuo ; Lü, Jing-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal structure</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Figure of merit</topic><topic>Molecular dynamics</topic><topic>Phonons</topic><topic>Thermoelectricity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Xue-Ya</creatorcontrib><creatorcontrib>Yu, Xiaoxiang</creatorcontrib><creatorcontrib>Yao, Kai-Lun</creatorcontrib><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Yang, Nuo</creatorcontrib><creatorcontrib>Lü, Jing-Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Xue-Ya</au><au>Yu, Xiaoxiang</au><au>Yao, Kai-Lun</au><au>Huang, Xiaoming</au><au>Yang, Nuo</au><au>Lü, Jing-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-08-12</date><risdate>2015</risdate><volume>15</volume><issue>8</issue><spage>5229</spage><epage>5234</epage><pages>5229-5234</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis­(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26151091</pmid><doi>10.1021/acs.nanolett.5b01491</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2015-08, Vol.15 (8), p.5229-5234
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762058397
source ACS Publications
subjects Crystal structure
Electronic structure
Electronics
Figure of merit
Molecular dynamics
Phonons
Thermoelectricity
Transport
title Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Thermoelectric%20Figure%20of%20Merit%20by%20Low-Dimensional%20Electrical%20Transport%20in%20Phonon-Glass%20Crystals&rft.jtitle=Nano%20letters&rft.au=Mi,%20Xue-Ya&rft.date=2015-08-12&rft.volume=15&rft.issue=8&rft.spage=5229&rft.epage=5234&rft.pages=5229-5234&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b01491&rft_dat=%3Cproquest_cross%3E1762058397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703720808&rft_id=info:pmid/26151091&rfr_iscdi=true