Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals
Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multi...
Gespeichert in:
Veröffentlicht in: | Nano letters 2015-08, Vol.15 (8), p.5229-5234 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5234 |
---|---|
container_issue | 8 |
container_start_page | 5229 |
container_title | Nano letters |
container_volume | 15 |
creator | Mi, Xue-Ya Yu, Xiaoxiang Yao, Kai-Lun Huang, Xiaoming Yang, Nuo Lü, Jing-Tao |
description | Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea. |
doi_str_mv | 10.1021/acs.nanolett.5b01491 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762058397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762058397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EouXjHyDkkSXlHMeJPaLSFqQiGMocOY7TGiV2sR2h_ntStTAiprvhee909yB0Q2BCICX3UoWJlda1OsYJq4BkgpygMWEUklyI9PS359kIXYTwAQCCMjhHozQnjIAgY9TN7EZaZewax43Gq432ndOtVtEbhedm3XuNXYNftDcRVzu8dF_Jo-m0DcZZ2eLZkR3alZc2bJ2P2Fj8tnHW2WTRyhDw1O9ClG24QmfNUPT1sV6i9_lsNX1Klq-L5-nDMpGZoDHhlNVK5IoXNeOsSRk0w3WUcK0qUomcAWtIKus61yxrJC1qDrnMSSMyzoEAvUR3h7lb7z57HWLZmaB020qrXR9KUuQpME5F8Q8UaJECBz6g2QFV3oXgdVNuvemk35UEyr2TcnBS_jgpj06G2O1xQ191uv4N_UgYADgA-_iH6_3w1_D3zG87npvC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703720808</pqid></control><display><type>article</type><title>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</title><source>ACS Publications</source><creator>Mi, Xue-Ya ; Yu, Xiaoxiang ; Yao, Kai-Lun ; Huang, Xiaoming ; Yang, Nuo ; Lü, Jing-Tao</creator><creatorcontrib>Mi, Xue-Ya ; Yu, Xiaoxiang ; Yao, Kai-Lun ; Huang, Xiaoming ; Yang, Nuo ; Lü, Jing-Tao</creatorcontrib><description>Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.5b01491</identifier><identifier>PMID: 26151091</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Crystal structure ; Electronic structure ; Electronics ; Figure of merit ; Molecular dynamics ; Phonons ; Thermoelectricity ; Transport</subject><ispartof>Nano letters, 2015-08, Vol.15 (8), p.5229-5234</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</citedby><cites>FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5b01491$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.5b01491$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26151091$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mi, Xue-Ya</creatorcontrib><creatorcontrib>Yu, Xiaoxiang</creatorcontrib><creatorcontrib>Yao, Kai-Lun</creatorcontrib><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Yang, Nuo</creatorcontrib><creatorcontrib>Lü, Jing-Tao</creatorcontrib><title>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.</description><subject>Crystal structure</subject><subject>Electronic structure</subject><subject>Electronics</subject><subject>Figure of merit</subject><subject>Molecular dynamics</subject><subject>Phonons</subject><subject>Thermoelectricity</subject><subject>Transport</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAQhi0EouXjHyDkkSXlHMeJPaLSFqQiGMocOY7TGiV2sR2h_ntStTAiprvhee909yB0Q2BCICX3UoWJlda1OsYJq4BkgpygMWEUklyI9PS359kIXYTwAQCCMjhHozQnjIAgY9TN7EZaZewax43Gq432ndOtVtEbhedm3XuNXYNftDcRVzu8dF_Jo-m0DcZZ2eLZkR3alZc2bJ2P2Fj8tnHW2WTRyhDw1O9ClG24QmfNUPT1sV6i9_lsNX1Klq-L5-nDMpGZoDHhlNVK5IoXNeOsSRk0w3WUcK0qUomcAWtIKus61yxrJC1qDrnMSSMyzoEAvUR3h7lb7z57HWLZmaB020qrXR9KUuQpME5F8Q8UaJECBz6g2QFV3oXgdVNuvemk35UEyr2TcnBS_jgpj06G2O1xQ191uv4N_UgYADgA-_iH6_3w1_D3zG87npvC</recordid><startdate>20150812</startdate><enddate>20150812</enddate><creator>Mi, Xue-Ya</creator><creator>Yu, Xiaoxiang</creator><creator>Yao, Kai-Lun</creator><creator>Huang, Xiaoming</creator><creator>Yang, Nuo</creator><creator>Lü, Jing-Tao</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150812</creationdate><title>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</title><author>Mi, Xue-Ya ; Yu, Xiaoxiang ; Yao, Kai-Lun ; Huang, Xiaoming ; Yang, Nuo ; Lü, Jing-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a493t-835dc96c87d585f250f149318ecb1b96505f12add6e54fa37d806a61f94880103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal structure</topic><topic>Electronic structure</topic><topic>Electronics</topic><topic>Figure of merit</topic><topic>Molecular dynamics</topic><topic>Phonons</topic><topic>Thermoelectricity</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mi, Xue-Ya</creatorcontrib><creatorcontrib>Yu, Xiaoxiang</creatorcontrib><creatorcontrib>Yao, Kai-Lun</creatorcontrib><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Yang, Nuo</creatorcontrib><creatorcontrib>Lü, Jing-Tao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mi, Xue-Ya</au><au>Yu, Xiaoxiang</au><au>Yao, Kai-Lun</au><au>Huang, Xiaoming</au><au>Yang, Nuo</au><au>Lü, Jing-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2015-08-12</date><risdate>2015</risdate><volume>15</volume><issue>8</issue><spage>5229</spage><epage>5234</epage><pages>5229-5234</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π–π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26151091</pmid><doi>10.1021/acs.nanolett.5b01491</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2015-08, Vol.15 (8), p.5229-5234 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762058397 |
source | ACS Publications |
subjects | Crystal structure Electronic structure Electronics Figure of merit Molecular dynamics Phonons Thermoelectricity Transport |
title | Enhancing the Thermoelectric Figure of Merit by Low-Dimensional Electrical Transport in Phonon-Glass Crystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20Thermoelectric%20Figure%20of%20Merit%20by%20Low-Dimensional%20Electrical%20Transport%20in%20Phonon-Glass%20Crystals&rft.jtitle=Nano%20letters&rft.au=Mi,%20Xue-Ya&rft.date=2015-08-12&rft.volume=15&rft.issue=8&rft.spage=5229&rft.epage=5234&rft.pages=5229-5234&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.5b01491&rft_dat=%3Cproquest_cross%3E1762058397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703720808&rft_id=info:pmid/26151091&rfr_iscdi=true |