Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation

Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2012-01, Vol.6 (1), p.362-372
Hauptverfasser: Shin, Su Ryon, Bae, Hojae, Cha, Jae Min, Mun, Ji Young, Chen, Ying-Chieh, Tekin, Halil, Shin, Hyeongho, Farshchi, Saeed, Dokmeci, Mehmet R, Tang, Shirley, Khademhosseini, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 372
container_issue 1
container_start_page 362
container_title ACS nano
container_volume 6
creator Shin, Su Ryon
Bae, Hojae
Cha, Jae Min
Mun, Ji Young
Chen, Ying-Chieh
Tekin, Halil
Shin, Hyeongho
Farshchi, Saeed
Dokmeci, Mehmet R
Tang, Shirley
Khademhosseini, Ali
description Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.
doi_str_mv 10.1021/nn203711s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762057424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762057424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EolAY-APICxIMBZ-T2M6IokKRCkjQoVvkOBeUKrWLnQz99xi1dGK6092np_ceIVfA7oFxeLCWs0QChCNyBnkiJkyJ5fFhz2BEzkNYMZZJJcUpGXEOIFWmzsiy0L5ylr5p6_qhQvqBrW2cN1jT2bbybU1fW-PdF3aB6kA_jW4a18Wr7tG3Ol4jTQvsOjq1Rm_C0Om-dfaCnDTxi5f7OSaLp-mimE3m788vxeN8otNU9ZPoutZVCkJUAhFzw_JaMWC1UDqTjchBgECZG6MgyRtjuEk0V3WuJAiZJWNyu5PdePc9YOjLdRtMdKMtuiGUIAWPsVOeRvRuh8Y4IXhsyo1v19pvS2Dlb4_locfIXu9lh2qN9YH8Ky4CNztAm1Cu3OBtDPmP0A9u1Hk2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762057424</pqid></control><display><type>article</type><title>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shin, Su Ryon ; Bae, Hojae ; Cha, Jae Min ; Mun, Ji Young ; Chen, Ying-Chieh ; Tekin, Halil ; Shin, Hyeongho ; Farshchi, Saeed ; Dokmeci, Mehmet R ; Tang, Shirley ; Khademhosseini, Ali</creator><creatorcontrib>Shin, Su Ryon ; Bae, Hojae ; Cha, Jae Min ; Mun, Ji Young ; Chen, Ying-Chieh ; Tekin, Halil ; Shin, Hyeongho ; Farshchi, Saeed ; Dokmeci, Mehmet R ; Tang, Shirley ; Khademhosseini, Ali</creatorcontrib><description>Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn203711s</identifier><identifier>PMID: 22117858</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Carbon nanotubes ; Cell Proliferation ; Cell Survival ; Construction ; Electrochemical machining ; Encapsulation ; Equipment Design ; Equipment Failure Analysis ; Humans ; Hydrogels ; Hydrogels - chemistry ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - physiology ; Mice ; Microgels ; Nanocapsules - chemistry ; Nanocapsules - ultrastructure ; Nanostructure ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; NIH 3T3 Cells ; Spreads ; Three dimensional ; Tissue Engineering - instrumentation ; Tissue Scaffolds</subject><ispartof>ACS nano, 2012-01, Vol.6 (1), p.362-372</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</citedby><cites>FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn203711s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn203711s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22117858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Su Ryon</creatorcontrib><creatorcontrib>Bae, Hojae</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><creatorcontrib>Mun, Ji Young</creatorcontrib><creatorcontrib>Chen, Ying-Chieh</creatorcontrib><creatorcontrib>Tekin, Halil</creatorcontrib><creatorcontrib>Shin, Hyeongho</creatorcontrib><creatorcontrib>Farshchi, Saeed</creatorcontrib><creatorcontrib>Dokmeci, Mehmet R</creatorcontrib><creatorcontrib>Tang, Shirley</creatorcontrib><creatorcontrib>Khademhosseini, Ali</creatorcontrib><title>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.</description><subject>Animals</subject><subject>Carbon nanotubes</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Construction</subject><subject>Electrochemical machining</subject><subject>Encapsulation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - physiology</subject><subject>Mice</subject><subject>Microgels</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - ultrastructure</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>NIH 3T3 Cells</subject><subject>Spreads</subject><subject>Three dimensional</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Scaffolds</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkDFPwzAQhS0EolAY-APICxIMBZ-T2M6IokKRCkjQoVvkOBeUKrWLnQz99xi1dGK6092np_ceIVfA7oFxeLCWs0QChCNyBnkiJkyJ5fFhz2BEzkNYMZZJJcUpGXEOIFWmzsiy0L5ylr5p6_qhQvqBrW2cN1jT2bbybU1fW-PdF3aB6kA_jW4a18Wr7tG3Ol4jTQvsOjq1Rm_C0Om-dfaCnDTxi5f7OSaLp-mimE3m788vxeN8otNU9ZPoutZVCkJUAhFzw_JaMWC1UDqTjchBgECZG6MgyRtjuEk0V3WuJAiZJWNyu5PdePc9YOjLdRtMdKMtuiGUIAWPsVOeRvRuh8Y4IXhsyo1v19pvS2Dlb4_locfIXu9lh2qN9YH8Ky4CNztAm1Cu3OBtDPmP0A9u1Hk2</recordid><startdate>20120124</startdate><enddate>20120124</enddate><creator>Shin, Su Ryon</creator><creator>Bae, Hojae</creator><creator>Cha, Jae Min</creator><creator>Mun, Ji Young</creator><creator>Chen, Ying-Chieh</creator><creator>Tekin, Halil</creator><creator>Shin, Hyeongho</creator><creator>Farshchi, Saeed</creator><creator>Dokmeci, Mehmet R</creator><creator>Tang, Shirley</creator><creator>Khademhosseini, Ali</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120124</creationdate><title>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</title><author>Shin, Su Ryon ; Bae, Hojae ; Cha, Jae Min ; Mun, Ji Young ; Chen, Ying-Chieh ; Tekin, Halil ; Shin, Hyeongho ; Farshchi, Saeed ; Dokmeci, Mehmet R ; Tang, Shirley ; Khademhosseini, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Carbon nanotubes</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Construction</topic><topic>Electrochemical machining</topic><topic>Encapsulation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - physiology</topic><topic>Mice</topic><topic>Microgels</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - ultrastructure</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>NIH 3T3 Cells</topic><topic>Spreads</topic><topic>Three dimensional</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Su Ryon</creatorcontrib><creatorcontrib>Bae, Hojae</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><creatorcontrib>Mun, Ji Young</creatorcontrib><creatorcontrib>Chen, Ying-Chieh</creatorcontrib><creatorcontrib>Tekin, Halil</creatorcontrib><creatorcontrib>Shin, Hyeongho</creatorcontrib><creatorcontrib>Farshchi, Saeed</creatorcontrib><creatorcontrib>Dokmeci, Mehmet R</creatorcontrib><creatorcontrib>Tang, Shirley</creatorcontrib><creatorcontrib>Khademhosseini, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Su Ryon</au><au>Bae, Hojae</au><au>Cha, Jae Min</au><au>Mun, Ji Young</au><au>Chen, Ying-Chieh</au><au>Tekin, Halil</au><au>Shin, Hyeongho</au><au>Farshchi, Saeed</au><au>Dokmeci, Mehmet R</au><au>Tang, Shirley</au><au>Khademhosseini, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-01-24</date><risdate>2012</risdate><volume>6</volume><issue>1</issue><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22117858</pmid><doi>10.1021/nn203711s</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2012-01, Vol.6 (1), p.362-372
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762057424
source MEDLINE; American Chemical Society Journals
subjects Animals
Carbon nanotubes
Cell Proliferation
Cell Survival
Construction
Electrochemical machining
Encapsulation
Equipment Design
Equipment Failure Analysis
Humans
Hydrogels
Hydrogels - chemistry
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - physiology
Mice
Microgels
Nanocapsules - chemistry
Nanocapsules - ultrastructure
Nanostructure
Nanotubes, Carbon - chemistry
Nanotubes, Carbon - ultrastructure
NIH 3T3 Cells
Spreads
Three dimensional
Tissue Engineering - instrumentation
Tissue Scaffolds
title Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Reinforced%20Hybrid%20Microgels%20as%20Scaffold%20Materials%20for%20Cell%20Encapsulation&rft.jtitle=ACS%20nano&rft.au=Shin,%20Su%20Ryon&rft.date=2012-01-24&rft.volume=6&rft.issue=1&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn203711s&rft_dat=%3Cproquest_cross%3E1762057424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762057424&rft_id=info:pmid/22117858&rfr_iscdi=true