Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation
Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed...
Gespeichert in:
Veröffentlicht in: | ACS nano 2012-01, Vol.6 (1), p.362-372 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 372 |
---|---|
container_issue | 1 |
container_start_page | 362 |
container_title | ACS nano |
container_volume | 6 |
creator | Shin, Su Ryon Bae, Hojae Cha, Jae Min Mun, Ji Young Chen, Ying-Chieh Tekin, Halil Shin, Hyeongho Farshchi, Saeed Dokmeci, Mehmet R Tang, Shirley Khademhosseini, Ali |
description | Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures. |
doi_str_mv | 10.1021/nn203711s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762057424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762057424</sourcerecordid><originalsourceid>FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</originalsourceid><addsrcrecordid>eNptkDFPwzAQhS0EolAY-APICxIMBZ-T2M6IokKRCkjQoVvkOBeUKrWLnQz99xi1dGK6092np_ceIVfA7oFxeLCWs0QChCNyBnkiJkyJ5fFhz2BEzkNYMZZJJcUpGXEOIFWmzsiy0L5ylr5p6_qhQvqBrW2cN1jT2bbybU1fW-PdF3aB6kA_jW4a18Wr7tG3Ol4jTQvsOjq1Rm_C0Om-dfaCnDTxi5f7OSaLp-mimE3m788vxeN8otNU9ZPoutZVCkJUAhFzw_JaMWC1UDqTjchBgECZG6MgyRtjuEk0V3WuJAiZJWNyu5PdePc9YOjLdRtMdKMtuiGUIAWPsVOeRvRuh8Y4IXhsyo1v19pvS2Dlb4_locfIXu9lh2qN9YH8Ky4CNztAm1Cu3OBtDPmP0A9u1Hk2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762057424</pqid></control><display><type>article</type><title>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Shin, Su Ryon ; Bae, Hojae ; Cha, Jae Min ; Mun, Ji Young ; Chen, Ying-Chieh ; Tekin, Halil ; Shin, Hyeongho ; Farshchi, Saeed ; Dokmeci, Mehmet R ; Tang, Shirley ; Khademhosseini, Ali</creator><creatorcontrib>Shin, Su Ryon ; Bae, Hojae ; Cha, Jae Min ; Mun, Ji Young ; Chen, Ying-Chieh ; Tekin, Halil ; Shin, Hyeongho ; Farshchi, Saeed ; Dokmeci, Mehmet R ; Tang, Shirley ; Khademhosseini, Ali</creatorcontrib><description>Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn203711s</identifier><identifier>PMID: 22117858</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Carbon nanotubes ; Cell Proliferation ; Cell Survival ; Construction ; Electrochemical machining ; Encapsulation ; Equipment Design ; Equipment Failure Analysis ; Humans ; Hydrogels ; Hydrogels - chemistry ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - physiology ; Mice ; Microgels ; Nanocapsules - chemistry ; Nanocapsules - ultrastructure ; Nanostructure ; Nanotubes, Carbon - chemistry ; Nanotubes, Carbon - ultrastructure ; NIH 3T3 Cells ; Spreads ; Three dimensional ; Tissue Engineering - instrumentation ; Tissue Scaffolds</subject><ispartof>ACS nano, 2012-01, Vol.6 (1), p.362-372</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</citedby><cites>FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn203711s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn203711s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22117858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shin, Su Ryon</creatorcontrib><creatorcontrib>Bae, Hojae</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><creatorcontrib>Mun, Ji Young</creatorcontrib><creatorcontrib>Chen, Ying-Chieh</creatorcontrib><creatorcontrib>Tekin, Halil</creatorcontrib><creatorcontrib>Shin, Hyeongho</creatorcontrib><creatorcontrib>Farshchi, Saeed</creatorcontrib><creatorcontrib>Dokmeci, Mehmet R</creatorcontrib><creatorcontrib>Tang, Shirley</creatorcontrib><creatorcontrib>Khademhosseini, Ali</creatorcontrib><title>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.</description><subject>Animals</subject><subject>Carbon nanotubes</subject><subject>Cell Proliferation</subject><subject>Cell Survival</subject><subject>Construction</subject><subject>Electrochemical machining</subject><subject>Encapsulation</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - physiology</subject><subject>Mice</subject><subject>Microgels</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - ultrastructure</subject><subject>Nanostructure</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nanotubes, Carbon - ultrastructure</subject><subject>NIH 3T3 Cells</subject><subject>Spreads</subject><subject>Three dimensional</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Scaffolds</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkDFPwzAQhS0EolAY-APICxIMBZ-T2M6IokKRCkjQoVvkOBeUKrWLnQz99xi1dGK6092np_ceIVfA7oFxeLCWs0QChCNyBnkiJkyJ5fFhz2BEzkNYMZZJJcUpGXEOIFWmzsiy0L5ylr5p6_qhQvqBrW2cN1jT2bbybU1fW-PdF3aB6kA_jW4a18Wr7tG3Ol4jTQvsOjq1Rm_C0Om-dfaCnDTxi5f7OSaLp-mimE3m788vxeN8otNU9ZPoutZVCkJUAhFzw_JaMWC1UDqTjchBgECZG6MgyRtjuEk0V3WuJAiZJWNyu5PdePc9YOjLdRtMdKMtuiGUIAWPsVOeRvRuh8Y4IXhsyo1v19pvS2Dlb4_locfIXu9lh2qN9YH8Ky4CNztAm1Cu3OBtDPmP0A9u1Hk2</recordid><startdate>20120124</startdate><enddate>20120124</enddate><creator>Shin, Su Ryon</creator><creator>Bae, Hojae</creator><creator>Cha, Jae Min</creator><creator>Mun, Ji Young</creator><creator>Chen, Ying-Chieh</creator><creator>Tekin, Halil</creator><creator>Shin, Hyeongho</creator><creator>Farshchi, Saeed</creator><creator>Dokmeci, Mehmet R</creator><creator>Tang, Shirley</creator><creator>Khademhosseini, Ali</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120124</creationdate><title>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</title><author>Shin, Su Ryon ; Bae, Hojae ; Cha, Jae Min ; Mun, Ji Young ; Chen, Ying-Chieh ; Tekin, Halil ; Shin, Hyeongho ; Farshchi, Saeed ; Dokmeci, Mehmet R ; Tang, Shirley ; Khademhosseini, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a448t-711dab4166b6eee9c09d8010d68a57f691616e79cc8139fcc2c3a28d98716753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Carbon nanotubes</topic><topic>Cell Proliferation</topic><topic>Cell Survival</topic><topic>Construction</topic><topic>Electrochemical machining</topic><topic>Encapsulation</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - physiology</topic><topic>Mice</topic><topic>Microgels</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - ultrastructure</topic><topic>Nanostructure</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nanotubes, Carbon - ultrastructure</topic><topic>NIH 3T3 Cells</topic><topic>Spreads</topic><topic>Three dimensional</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Su Ryon</creatorcontrib><creatorcontrib>Bae, Hojae</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><creatorcontrib>Mun, Ji Young</creatorcontrib><creatorcontrib>Chen, Ying-Chieh</creatorcontrib><creatorcontrib>Tekin, Halil</creatorcontrib><creatorcontrib>Shin, Hyeongho</creatorcontrib><creatorcontrib>Farshchi, Saeed</creatorcontrib><creatorcontrib>Dokmeci, Mehmet R</creatorcontrib><creatorcontrib>Tang, Shirley</creatorcontrib><creatorcontrib>Khademhosseini, Ali</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Su Ryon</au><au>Bae, Hojae</au><au>Cha, Jae Min</au><au>Mun, Ji Young</au><au>Chen, Ying-Chieh</au><au>Tekin, Halil</au><au>Shin, Hyeongho</au><au>Farshchi, Saeed</au><au>Dokmeci, Mehmet R</au><au>Tang, Shirley</au><au>Khademhosseini, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-01-24</date><risdate>2012</risdate><volume>6</volume><issue>1</issue><spage>362</spage><epage>372</epage><pages>362-372</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT–gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three-dimensional (3D) constructs. The addition of carbon nanotubes (CNTs) successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT–GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT–GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22117858</pmid><doi>10.1021/nn203711s</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2012-01, Vol.6 (1), p.362-372 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762057424 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Carbon nanotubes Cell Proliferation Cell Survival Construction Electrochemical machining Encapsulation Equipment Design Equipment Failure Analysis Humans Hydrogels Hydrogels - chemistry Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - physiology Mice Microgels Nanocapsules - chemistry Nanocapsules - ultrastructure Nanostructure Nanotubes, Carbon - chemistry Nanotubes, Carbon - ultrastructure NIH 3T3 Cells Spreads Three dimensional Tissue Engineering - instrumentation Tissue Scaffolds |
title | Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T03%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Nanotube%20Reinforced%20Hybrid%20Microgels%20as%20Scaffold%20Materials%20for%20Cell%20Encapsulation&rft.jtitle=ACS%20nano&rft.au=Shin,%20Su%20Ryon&rft.date=2012-01-24&rft.volume=6&rft.issue=1&rft.spage=362&rft.epage=372&rft.pages=362-372&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn203711s&rft_dat=%3Cproquest_cross%3E1762057424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762057424&rft_id=info:pmid/22117858&rfr_iscdi=true |