Sequential multi-molecule delivery using vortex-assisted electroporation

We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2013-07, Vol.13 (14), p.2764-2772
Hauptverfasser: Yun, Hoyoung, Hur, Soojung Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2772
container_issue 14
container_start_page 2764
container_title Lab on a chip
container_volume 13
creator Yun, Hoyoung
Hur, Soojung Claire
description We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.
doi_str_mv 10.1039/c3lc50196e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762056853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1369716260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</originalsourceid><addsrcrecordid>eNqF0M1KAzEUBeAgitXqxgeQWYowmptkkmYpRa1QcKGuh5n8SCQzqUmm2Ld3pLUuXd27-DgcDkIXgG8AU3mrqFcVBsnNAToBJmiJYSYP978UE3Sa0gfGUDE-O0YTQgURUsxO0OLFfA6mz67xRTf47MoueKMGbwptvFubuCmG5Pr3Yh1iNl9lk5JL2ejCjCzHsAqxyS70Z-jINj6Z892doreH-9f5olw-Pz7N75alogTnkrDGCm1JC60kSmpiWgt0bAaSUEyhUpQCtpYpsFzjRlcVwxaAtQQzpjmdoqtt7iqGsXnKdeeSMt43vQlDqkFwgis-q-j_lHIpgBOOR3q9pSqGlKKx9Sq6rombGnD9M3L9N_KIL3e5Q9sZvae_q9JvndR3xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369716260</pqid></control><display><type>article</type><title>Sequential multi-molecule delivery using vortex-assisted electroporation</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Yun, Hoyoung ; Hur, Soojung Claire</creator><creatorcontrib>Yun, Hoyoung ; Hur, Soojung Claire</creatorcontrib><description>We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c3lc50196e</identifier><identifier>PMID: 23727978</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cell Line, Tumor ; Cell Survival ; Controllability ; Electric field strength ; Electrochemotherapy - instrumentation ; Electrochemotherapy - methods ; Electroporation ; Electroporation - instrumentation ; Electroporation - methods ; Equipment Design ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Gene Transfer Techniques ; Genes ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Human ; Humans ; Luminescent Proteins - genetics ; Microfluidic Analytical Techniques ; Microfluidics ; Microscopy, Fluorescence ; Monitoring ; Plasmids ; Red Fluorescent Protein ; Transfection ; Viability</subject><ispartof>Lab on a chip, 2013-07, Vol.13 (14), p.2764-2772</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</citedby><cites>FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23727978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Hoyoung</creatorcontrib><creatorcontrib>Hur, Soojung Claire</creatorcontrib><title>Sequential multi-molecule delivery using vortex-assisted electroporation</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Controllability</subject><subject>Electric field strength</subject><subject>Electrochemotherapy - instrumentation</subject><subject>Electrochemotherapy - methods</subject><subject>Electroporation</subject><subject>Electroporation - instrumentation</subject><subject>Electroporation - methods</subject><subject>Equipment Design</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Gene Transfer Techniques</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Human</subject><subject>Humans</subject><subject>Luminescent Proteins - genetics</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Microscopy, Fluorescence</subject><subject>Monitoring</subject><subject>Plasmids</subject><subject>Red Fluorescent Protein</subject><subject>Transfection</subject><subject>Viability</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1KAzEUBeAgitXqxgeQWYowmptkkmYpRa1QcKGuh5n8SCQzqUmm2Ld3pLUuXd27-DgcDkIXgG8AU3mrqFcVBsnNAToBJmiJYSYP978UE3Sa0gfGUDE-O0YTQgURUsxO0OLFfA6mz67xRTf47MoueKMGbwptvFubuCmG5Pr3Yh1iNl9lk5JL2ejCjCzHsAqxyS70Z-jINj6Z892doreH-9f5olw-Pz7N75alogTnkrDGCm1JC60kSmpiWgt0bAaSUEyhUpQCtpYpsFzjRlcVwxaAtQQzpjmdoqtt7iqGsXnKdeeSMt43vQlDqkFwgis-q-j_lHIpgBOOR3q9pSqGlKKx9Sq6rombGnD9M3L9N_KIL3e5Q9sZvae_q9JvndR3xg</recordid><startdate>20130721</startdate><enddate>20130721</enddate><creator>Yun, Hoyoung</creator><creator>Hur, Soojung Claire</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130721</creationdate><title>Sequential multi-molecule delivery using vortex-assisted electroporation</title><author>Yun, Hoyoung ; Hur, Soojung Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Controllability</topic><topic>Electric field strength</topic><topic>Electrochemotherapy - instrumentation</topic><topic>Electrochemotherapy - methods</topic><topic>Electroporation</topic><topic>Electroporation - instrumentation</topic><topic>Electroporation - methods</topic><topic>Equipment Design</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Gene Transfer Techniques</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Human</topic><topic>Humans</topic><topic>Luminescent Proteins - genetics</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Microscopy, Fluorescence</topic><topic>Monitoring</topic><topic>Plasmids</topic><topic>Red Fluorescent Protein</topic><topic>Transfection</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Hoyoung</creatorcontrib><creatorcontrib>Hur, Soojung Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Hoyoung</au><au>Hur, Soojung Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential multi-molecule delivery using vortex-assisted electroporation</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2013-07-21</date><risdate>2013</risdate><volume>13</volume><issue>14</issue><spage>2764</spage><epage>2772</epage><pages>2764-2772</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.</abstract><cop>England</cop><pmid>23727978</pmid><doi>10.1039/c3lc50196e</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2013-07, Vol.13 (14), p.2764-2772
issn 1473-0197
1473-0189
language eng
recordid cdi_proquest_miscellaneous_1762056853
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Animals
Cell Line, Tumor
Cell Survival
Controllability
Electric field strength
Electrochemotherapy - instrumentation
Electrochemotherapy - methods
Electroporation
Electroporation - instrumentation
Electroporation - methods
Equipment Design
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Gene Transfer Techniques
Genes
Genes, Reporter
Green Fluorescent Proteins - genetics
Human
Humans
Luminescent Proteins - genetics
Microfluidic Analytical Techniques
Microfluidics
Microscopy, Fluorescence
Monitoring
Plasmids
Red Fluorescent Protein
Transfection
Viability
title Sequential multi-molecule delivery using vortex-assisted electroporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20multi-molecule%20delivery%20using%20vortex-assisted%20electroporation&rft.jtitle=Lab%20on%20a%20chip&rft.au=Yun,%20Hoyoung&rft.date=2013-07-21&rft.volume=13&rft.issue=14&rft.spage=2764&rft.epage=2772&rft.pages=2764-2772&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c3lc50196e&rft_dat=%3Cproquest_cross%3E1369716260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369716260&rft_id=info:pmid/23727978&rfr_iscdi=true