Sequential multi-molecule delivery using vortex-assisted electroporation
We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanc...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2013-07, Vol.13 (14), p.2764-2772 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2772 |
---|---|
container_issue | 14 |
container_start_page | 2764 |
container_title | Lab on a chip |
container_volume | 13 |
creator | Yun, Hoyoung Hur, Soojung Claire |
description | We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in. |
doi_str_mv | 10.1039/c3lc50196e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762056853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1369716260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</originalsourceid><addsrcrecordid>eNqF0M1KAzEUBeAgitXqxgeQWYowmptkkmYpRa1QcKGuh5n8SCQzqUmm2Ld3pLUuXd27-DgcDkIXgG8AU3mrqFcVBsnNAToBJmiJYSYP978UE3Sa0gfGUDE-O0YTQgURUsxO0OLFfA6mz67xRTf47MoueKMGbwptvFubuCmG5Pr3Yh1iNl9lk5JL2ejCjCzHsAqxyS70Z-jINj6Z892doreH-9f5olw-Pz7N75alogTnkrDGCm1JC60kSmpiWgt0bAaSUEyhUpQCtpYpsFzjRlcVwxaAtQQzpjmdoqtt7iqGsXnKdeeSMt43vQlDqkFwgis-q-j_lHIpgBOOR3q9pSqGlKKx9Sq6rombGnD9M3L9N_KIL3e5Q9sZvae_q9JvndR3xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1369716260</pqid></control><display><type>article</type><title>Sequential multi-molecule delivery using vortex-assisted electroporation</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Yun, Hoyoung ; Hur, Soojung Claire</creator><creatorcontrib>Yun, Hoyoung ; Hur, Soojung Claire</creatorcontrib><description>We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/c3lc50196e</identifier><identifier>PMID: 23727978</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cell Line, Tumor ; Cell Survival ; Controllability ; Electric field strength ; Electrochemotherapy - instrumentation ; Electrochemotherapy - methods ; Electroporation ; Electroporation - instrumentation ; Electroporation - methods ; Equipment Design ; Fluorescent Dyes - chemistry ; Fluorescent Dyes - metabolism ; Gene Transfer Techniques ; Genes ; Genes, Reporter ; Green Fluorescent Proteins - genetics ; Human ; Humans ; Luminescent Proteins - genetics ; Microfluidic Analytical Techniques ; Microfluidics ; Microscopy, Fluorescence ; Monitoring ; Plasmids ; Red Fluorescent Protein ; Transfection ; Viability</subject><ispartof>Lab on a chip, 2013-07, Vol.13 (14), p.2764-2772</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</citedby><cites>FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23727978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yun, Hoyoung</creatorcontrib><creatorcontrib>Hur, Soojung Claire</creatorcontrib><title>Sequential multi-molecule delivery using vortex-assisted electroporation</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.</description><subject>Animals</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>Controllability</subject><subject>Electric field strength</subject><subject>Electrochemotherapy - instrumentation</subject><subject>Electrochemotherapy - methods</subject><subject>Electroporation</subject><subject>Electroporation - instrumentation</subject><subject>Electroporation - methods</subject><subject>Equipment Design</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Gene Transfer Techniques</subject><subject>Genes</subject><subject>Genes, Reporter</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Human</subject><subject>Humans</subject><subject>Luminescent Proteins - genetics</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Microscopy, Fluorescence</subject><subject>Monitoring</subject><subject>Plasmids</subject><subject>Red Fluorescent Protein</subject><subject>Transfection</subject><subject>Viability</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1KAzEUBeAgitXqxgeQWYowmptkkmYpRa1QcKGuh5n8SCQzqUmm2Ld3pLUuXd27-DgcDkIXgG8AU3mrqFcVBsnNAToBJmiJYSYP978UE3Sa0gfGUDE-O0YTQgURUsxO0OLFfA6mz67xRTf47MoueKMGbwptvFubuCmG5Pr3Yh1iNl9lk5JL2ejCjCzHsAqxyS70Z-jINj6Z892doreH-9f5olw-Pz7N75alogTnkrDGCm1JC60kSmpiWgt0bAaSUEyhUpQCtpYpsFzjRlcVwxaAtQQzpjmdoqtt7iqGsXnKdeeSMt43vQlDqkFwgis-q-j_lHIpgBOOR3q9pSqGlKKx9Sq6rombGnD9M3L9N_KIL3e5Q9sZvae_q9JvndR3xg</recordid><startdate>20130721</startdate><enddate>20130721</enddate><creator>Yun, Hoyoung</creator><creator>Hur, Soojung Claire</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20130721</creationdate><title>Sequential multi-molecule delivery using vortex-assisted electroporation</title><author>Yun, Hoyoung ; Hur, Soojung Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-24af7df2b1b92c9d2ebf1300119230315c3310ff4c1f6d0ad5540f114b2044d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>Controllability</topic><topic>Electric field strength</topic><topic>Electrochemotherapy - instrumentation</topic><topic>Electrochemotherapy - methods</topic><topic>Electroporation</topic><topic>Electroporation - instrumentation</topic><topic>Electroporation - methods</topic><topic>Equipment Design</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Gene Transfer Techniques</topic><topic>Genes</topic><topic>Genes, Reporter</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Human</topic><topic>Humans</topic><topic>Luminescent Proteins - genetics</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Microscopy, Fluorescence</topic><topic>Monitoring</topic><topic>Plasmids</topic><topic>Red Fluorescent Protein</topic><topic>Transfection</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yun, Hoyoung</creatorcontrib><creatorcontrib>Hur, Soojung Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yun, Hoyoung</au><au>Hur, Soojung Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential multi-molecule delivery using vortex-assisted electroporation</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2013-07-21</date><risdate>2013</risdate><volume>13</volume><issue>14</issue><spage>2764</spage><epage>2772</epage><pages>2764-2772</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>We developed an on-chip microscale electroporation system that enables sequential delivery of multiple molecules with precise and independent dosage controllability into pre-selected identical populations of target cells. The ability to trap cells with uniform size distribution contributed to enhanced molecular delivery efficiency and cell viability. Additionally, the system provides real-time monitoring ability of the entire delivery process, allowing timely and independent modification of cell- and molecule-specific electroporation parameters. The precisely controlled amount of inherently membrane-impermeant molecules was transferred into human cancer cells by varying electric field strengths and molecule injection durations. The proposed microfluidic electroporation system's improved viability and comparable gene transfection efficiency to that of commercial systems suggest that the current system has great potential to expand the research fields that on-chip electroporation techniques can be used in.</abstract><cop>England</cop><pmid>23727978</pmid><doi>10.1039/c3lc50196e</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2013-07, Vol.13 (14), p.2764-2772 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762056853 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Animals Cell Line, Tumor Cell Survival Controllability Electric field strength Electrochemotherapy - instrumentation Electrochemotherapy - methods Electroporation Electroporation - instrumentation Electroporation - methods Equipment Design Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Gene Transfer Techniques Genes Genes, Reporter Green Fluorescent Proteins - genetics Human Humans Luminescent Proteins - genetics Microfluidic Analytical Techniques Microfluidics Microscopy, Fluorescence Monitoring Plasmids Red Fluorescent Protein Transfection Viability |
title | Sequential multi-molecule delivery using vortex-assisted electroporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20multi-molecule%20delivery%20using%20vortex-assisted%20electroporation&rft.jtitle=Lab%20on%20a%20chip&rft.au=Yun,%20Hoyoung&rft.date=2013-07-21&rft.volume=13&rft.issue=14&rft.spage=2764&rft.epage=2772&rft.pages=2764-2772&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/c3lc50196e&rft_dat=%3Cproquest_cross%3E1369716260%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1369716260&rft_id=info:pmid/23727978&rfr_iscdi=true |