Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case
The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results,...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (40), p.9561-9567 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9567 |
---|---|
container_issue | 40 |
container_start_page | 9561 |
container_title | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory |
container_volume | 118 |
creator | Strutyński, Karol Gomes, José A. N. F Melle-Franco, Manuel |
description | The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries. |
doi_str_mv | 10.1021/jp506860t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762056737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1610756214</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</originalsourceid><addsrcrecordid>eNqF0ctKxTAQBuAgiveFLyDZCLqoJmmTtu70eAXFhboO6XSKObZpTVpBn97oUVeCEMgwfMwPM4TscHbImeBH80EyVSg2LpF1LgVLpOByOdasKBOp0nKNbIQwZ4zxVGSrZE1EVLBSrpPnE4DJG3ijfUPPbBjQB9s7eu1GjO0x1oFaR--xs9gN1lswLTWuprd9izC1xtNbhCfjLITYq7ENx_ThCekpund0GId26OnMBNwiK41pA25__5vk8eL8YXaV3NxdXs9ObhKT5umYVAhVKTKVAWR5XmKGTHIQTYNCQVlVtco5FqyGTNSylKKQTKTxQaN4ZgRPN8n-Yu7g-5cJw6g7GwDb1jjsp6B5rgSTKo9p_1LFWS6V4FmkBwsKvg_BY6MHbzvj3zRn-vMM-vcM0e5-j52qDutf-bP3COgCeDBm0B5fbRhNzCuE0CnnX2RvQQwEPe8n7-LO_sj6AJA1mDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610756214</pqid></control><display><type>article</type><title>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</title><source>American Chemical Society Journals</source><creator>Strutyński, Karol ; Gomes, José A. N. F ; Melle-Franco, Manuel</creator><creatorcontrib>Strutyński, Karol ; Gomes, José A. N. F ; Melle-Franco, Manuel</creatorcontrib><description>The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp506860t</identifier><identifier>PMID: 25208095</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Benzene ; Ciências Físicas ; Ciências Naturais ; Dimers ; Dispersion ; Dispersions ; Graphene ; Mathematical models ; Minima ; Optimization ; Physical chemistry ; Science & Technology</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (40), p.9561-9567</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</citedby><cites>FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp506860t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp506860t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25208095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strutyński, Karol</creatorcontrib><creatorcontrib>Gomes, José A. N. F</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><title>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.</description><subject>Accuracy</subject><subject>Benzene</subject><subject>Ciências Físicas</subject><subject>Ciências Naturais</subject><subject>Dimers</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Graphene</subject><subject>Mathematical models</subject><subject>Minima</subject><subject>Optimization</subject><subject>Physical chemistry</subject><subject>Science & Technology</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKxTAQBuAgiveFLyDZCLqoJmmTtu70eAXFhboO6XSKObZpTVpBn97oUVeCEMgwfMwPM4TscHbImeBH80EyVSg2LpF1LgVLpOByOdasKBOp0nKNbIQwZ4zxVGSrZE1EVLBSrpPnE4DJG3ijfUPPbBjQB9s7eu1GjO0x1oFaR--xs9gN1lswLTWuprd9izC1xtNbhCfjLITYq7ENx_ThCekpund0GId26OnMBNwiK41pA25__5vk8eL8YXaV3NxdXs9ObhKT5umYVAhVKTKVAWR5XmKGTHIQTYNCQVlVtco5FqyGTNSylKKQTKTxQaN4ZgRPN8n-Yu7g-5cJw6g7GwDb1jjsp6B5rgSTKo9p_1LFWS6V4FmkBwsKvg_BY6MHbzvj3zRn-vMM-vcM0e5-j52qDutf-bP3COgCeDBm0B5fbRhNzCuE0CnnX2RvQQwEPe8n7-LO_sj6AJA1mDY</recordid><startdate>20141009</startdate><enddate>20141009</enddate><creator>Strutyński, Karol</creator><creator>Gomes, José A. N. F</creator><creator>Melle-Franco, Manuel</creator><general>American Chemical Society</general><scope>RCLKO</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141009</creationdate><title>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</title><author>Strutyński, Karol ; Gomes, José A. N. F ; Melle-Franco, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Benzene</topic><topic>Ciências Físicas</topic><topic>Ciências Naturais</topic><topic>Dimers</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Graphene</topic><topic>Mathematical models</topic><topic>Minima</topic><topic>Optimization</topic><topic>Physical chemistry</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strutyński, Karol</creatorcontrib><creatorcontrib>Gomes, José A. N. F</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><collection>RCAAP open access repository</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strutyński, Karol</au><au>Gomes, José A. N. F</au><au>Melle-Franco, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2014-10-09</date><risdate>2014</risdate><volume>118</volume><issue>40</issue><spage>9561</spage><epage>9567</epage><pages>9561-9567</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25208095</pmid><doi>10.1021/jp506860t</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-5639 |
ispartof | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (40), p.9561-9567 |
issn | 1089-5639 1520-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762056737 |
source | American Chemical Society Journals |
subjects | Accuracy Benzene Ciências Físicas Ciências Naturais Dimers Dispersion Dispersions Graphene Mathematical models Minima Optimization Physical chemistry Science & Technology |
title | Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20Dispersion%20Interactions%20in%20Semiempirical%20and%20Molecular%20Mechanics%20Models:%20The%20Benzene%20Dimer%20Case&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Strutyn%CC%81ski,%20Karol&rft.date=2014-10-09&rft.volume=118&rft.issue=40&rft.spage=9561&rft.epage=9567&rft.pages=9561-9567&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp506860t&rft_dat=%3Cproquest_cross%3E1610756214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610756214&rft_id=info:pmid/25208095&rfr_iscdi=true |