Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case

The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (40), p.9561-9567
Hauptverfasser: Strutyński, Karol, Gomes, José A. N. F, Melle-Franco, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9567
container_issue 40
container_start_page 9561
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 118
creator Strutyński, Karol
Gomes, José A. N. F
Melle-Franco, Manuel
description The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.
doi_str_mv 10.1021/jp506860t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762056737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1610756214</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</originalsourceid><addsrcrecordid>eNqF0ctKxTAQBuAgiveFLyDZCLqoJmmTtu70eAXFhboO6XSKObZpTVpBn97oUVeCEMgwfMwPM4TscHbImeBH80EyVSg2LpF1LgVLpOByOdasKBOp0nKNbIQwZ4zxVGSrZE1EVLBSrpPnE4DJG3ijfUPPbBjQB9s7eu1GjO0x1oFaR--xs9gN1lswLTWuprd9izC1xtNbhCfjLITYq7ENx_ThCekpund0GId26OnMBNwiK41pA25__5vk8eL8YXaV3NxdXs9ObhKT5umYVAhVKTKVAWR5XmKGTHIQTYNCQVlVtco5FqyGTNSylKKQTKTxQaN4ZgRPN8n-Yu7g-5cJw6g7GwDb1jjsp6B5rgSTKo9p_1LFWS6V4FmkBwsKvg_BY6MHbzvj3zRn-vMM-vcM0e5-j52qDutf-bP3COgCeDBm0B5fbRhNzCuE0CnnX2RvQQwEPe8n7-LO_sj6AJA1mDY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1610756214</pqid></control><display><type>article</type><title>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</title><source>American Chemical Society Journals</source><creator>Strutyński, Karol ; Gomes, José A. N. F ; Melle-Franco, Manuel</creator><creatorcontrib>Strutyński, Karol ; Gomes, José A. N. F ; Melle-Franco, Manuel</creatorcontrib><description>The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp506860t</identifier><identifier>PMID: 25208095</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accuracy ; Benzene ; Ciências Físicas ; Ciências Naturais ; Dimers ; Dispersion ; Dispersions ; Graphene ; Mathematical models ; Minima ; Optimization ; Physical chemistry ; Science &amp; Technology</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2014-10, Vol.118 (40), p.9561-9567</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</citedby><cites>FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp506860t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp506860t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25208095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Strutyński, Karol</creatorcontrib><creatorcontrib>Gomes, José A. N. F</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><title>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.</description><subject>Accuracy</subject><subject>Benzene</subject><subject>Ciências Físicas</subject><subject>Ciências Naturais</subject><subject>Dimers</subject><subject>Dispersion</subject><subject>Dispersions</subject><subject>Graphene</subject><subject>Mathematical models</subject><subject>Minima</subject><subject>Optimization</subject><subject>Physical chemistry</subject><subject>Science &amp; Technology</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKxTAQBuAgiveFLyDZCLqoJmmTtu70eAXFhboO6XSKObZpTVpBn97oUVeCEMgwfMwPM4TscHbImeBH80EyVSg2LpF1LgVLpOByOdasKBOp0nKNbIQwZ4zxVGSrZE1EVLBSrpPnE4DJG3ijfUPPbBjQB9s7eu1GjO0x1oFaR--xs9gN1lswLTWuprd9izC1xtNbhCfjLITYq7ENx_ThCekpund0GId26OnMBNwiK41pA25__5vk8eL8YXaV3NxdXs9ObhKT5umYVAhVKTKVAWR5XmKGTHIQTYNCQVlVtco5FqyGTNSylKKQTKTxQaN4ZgRPN8n-Yu7g-5cJw6g7GwDb1jjsp6B5rgSTKo9p_1LFWS6V4FmkBwsKvg_BY6MHbzvj3zRn-vMM-vcM0e5-j52qDutf-bP3COgCeDBm0B5fbRhNzCuE0CnnX2RvQQwEPe8n7-LO_sj6AJA1mDY</recordid><startdate>20141009</startdate><enddate>20141009</enddate><creator>Strutyński, Karol</creator><creator>Gomes, José A. N. F</creator><creator>Melle-Franco, Manuel</creator><general>American Chemical Society</general><scope>RCLKO</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141009</creationdate><title>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</title><author>Strutyński, Karol ; Gomes, José A. N. F ; Melle-Franco, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-becb92464cc4779e4e051c2ffe26c9bbd671e80dc42d595285023023cf614a213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Benzene</topic><topic>Ciências Físicas</topic><topic>Ciências Naturais</topic><topic>Dimers</topic><topic>Dispersion</topic><topic>Dispersions</topic><topic>Graphene</topic><topic>Mathematical models</topic><topic>Minima</topic><topic>Optimization</topic><topic>Physical chemistry</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Strutyński, Karol</creatorcontrib><creatorcontrib>Gomes, José A. N. F</creatorcontrib><creatorcontrib>Melle-Franco, Manuel</creatorcontrib><collection>RCAAP open access repository</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Strutyński, Karol</au><au>Gomes, José A. N. F</au><au>Melle-Franco, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2014-10-09</date><risdate>2014</risdate><volume>118</volume><issue>40</issue><spage>9561</spage><epage>9567</epage><pages>9561-9567</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The benzene dimer is arguably the simplest molecular analogue of graphitic materials. We present the systematic study of minima and transition states of the benzene dimer with semiempirical and molecular mechanics (MM) methods. Full minimizations on all conformations were performed and the results, geometries, and binding energies were compared with CCSD(T) and DFT-D results. MM yields the best results with three force fields MM3, OPLS, and AMOEBA, which reproduced nine out of the ten stationary points of the benzene dimer. We obtained new parameters for MM3 and OPLS that successfully reproduce all structures of the benzene dimer and showed improved accuracy over DFT-D in most dimer geometries. Semiempirical models were, unexpectedly, less accurate than MM methods. The most accurate semiempirical method for the benzene dimer is PM6-DH2. DFT-D was the only Hamiltonian that reproduced the variations of energy with geometry from CCSD(T) calculations accurately and is the method of choice for energies of periodic and molecular calculations of graphitic systems. In contrast, MM represents an accurate alternative to calculate geometries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25208095</pmid><doi>10.1021/jp506860t</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (40), p.9561-9567
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_1762056737
source American Chemical Society Journals
subjects Accuracy
Benzene
Ciências Físicas
Ciências Naturais
Dimers
Dispersion
Dispersions
Graphene
Mathematical models
Minima
Optimization
Physical chemistry
Science & Technology
title Accuracy of Dispersion Interactions in Semiempirical and Molecular Mechanics Models: The Benzene Dimer Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accuracy%20of%20Dispersion%20Interactions%20in%20Semiempirical%20and%20Molecular%20Mechanics%20Models:%20The%20Benzene%20Dimer%20Case&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Strutyn%CC%81ski,%20Karol&rft.date=2014-10-09&rft.volume=118&rft.issue=40&rft.spage=9561&rft.epage=9567&rft.pages=9561-9567&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp506860t&rft_dat=%3Cproquest_cross%3E1610756214%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1610756214&rft_id=info:pmid/25208095&rfr_iscdi=true