Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology
A drug-loaded conductive polymer/hydrogel blend, benzoic acid-loaded poly(3,4-ethylenedioxythiophene/alginate (BA-loaded PEDOT/Alg) hydrogel, was used as a carrier/matrix for an electrical stimuli transdermal drug delivery system (TDDS). The effects of cross-linking ratio, PEDOT particle size, and e...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2014-08, Vol.118 (31), p.9263-9271 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9271 |
---|---|
container_issue | 31 |
container_start_page | 9263 |
container_title | The journal of physical chemistry. B |
container_volume | 118 |
creator | Paradee, Nophawan Sirivat, Anuvat |
description | A drug-loaded conductive polymer/hydrogel blend, benzoic acid-loaded poly(3,4-ethylenedioxythiophene/alginate (BA-loaded PEDOT/Alg) hydrogel, was used as a carrier/matrix for an electrical stimuli transdermal drug delivery system (TDDS). The effects of cross-linking ratio, PEDOT particle size, and electric field strength on the release mechanism and the diffusion coefficient (D) of BA were examined by using a modified Franz-diffusion cell. The diffusion scaling exponent value of BA is close to 0.5 which refers to the diffusion controlled mechanism, or the Fickian diffusion as the BA release mechanism. The D increased when there was a decrease in the cross-linking ratio due to the mesh size-hindering effect. When increasing electric field strength, the D of BA-loaded PEDOT/Alg hydrogel increased because the cathode–BA– electrorepulsion, electroinduced alginate expansion, and PEDOT electroneutralization simultaneously occurred. The highest D belonged to a blend with the smallest PEDOT particle and highest electrical conductivity. The D of BA was a function of the matrix mesh size except when drug size/mesh size was lower than 2.38 × 10–3, where D of BA became mesh size independent as the matrix mesh size was extremely large. Thus, the fabricated conductive polymer hydrogel blends have a great potential to be used in TDDS under electrical stimulation. |
doi_str_mv | 10.1021/jp502674f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762056467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762056467</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f66c0f4f7394633b8561c2a708f1a251e93d64dedfc45dbdcfcfd3ccdcd6df2f3</originalsourceid><addsrcrecordid>eNqFkd9qVDEQh4MotlYvfAHJjdBCT5v_2fVuXdZaaFFErw_ZZNLNkj05JudIjy_ka5qya6-EXgwzAx_fwPwQekvJBSWMXm57SZjSwj9Dx1Qy0tTSzw-zokQdoVelbAlhks3US3TEJJFzqefH6M8qgh1ysCbGCS9TN-QUIzj8DSKYAjh5_BG63ylYvLDBYZ_TDn9NcTrl56KBYTNF6MCFdD8Nm5D6Td3OLhfxLnRmAHxrqvz-A155X-882OoNN9oh_IInNfg25X6TYrqbXqMX3sQCbw79BP34tPq-_NzcfLm6Xi5uGsPFbGi8UpZ44TWfC8X5eiYVtcxoMvPUMElhzp0SDpy3Qrq1s956x6111innmecn6HTv7XP6OUIZ2l0oFmI0HaSxtFQrRqQSSj-NSsm41kKrip7tUZtTKRl82-ewM3lqKWkfImwfI6zsu4N2XO_APZL_MqvA-z1gbGm3acxdfch_RH8BqammMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552377476</pqid></control><display><type>article</type><title>Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Paradee, Nophawan ; Sirivat, Anuvat</creator><creatorcontrib>Paradee, Nophawan ; Sirivat, Anuvat</creatorcontrib><description>A drug-loaded conductive polymer/hydrogel blend, benzoic acid-loaded poly(3,4-ethylenedioxythiophene/alginate (BA-loaded PEDOT/Alg) hydrogel, was used as a carrier/matrix for an electrical stimuli transdermal drug delivery system (TDDS). The effects of cross-linking ratio, PEDOT particle size, and electric field strength on the release mechanism and the diffusion coefficient (D) of BA were examined by using a modified Franz-diffusion cell. The diffusion scaling exponent value of BA is close to 0.5 which refers to the diffusion controlled mechanism, or the Fickian diffusion as the BA release mechanism. The D increased when there was a decrease in the cross-linking ratio due to the mesh size-hindering effect. When increasing electric field strength, the D of BA-loaded PEDOT/Alg hydrogel increased because the cathode–BA– electrorepulsion, electroinduced alginate expansion, and PEDOT electroneutralization simultaneously occurred. The highest D belonged to a blend with the smallest PEDOT particle and highest electrical conductivity. The D of BA was a function of the matrix mesh size except when drug size/mesh size was lower than 2.38 × 10–3, where D of BA became mesh size independent as the matrix mesh size was extremely large. Thus, the fabricated conductive polymer hydrogel blends have a great potential to be used in TDDS under electrical stimulation.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp502674f</identifier><identifier>PMID: 25059579</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alginates ; Alginates - chemistry ; Benzoic Acid - chemistry ; Blends ; Bridged Bicyclo Compounds, Heterocyclic - chemistry ; Crosslinking ; Delayed-Action Preparations - chemistry ; Diffusion ; Drug delivery systems ; Electric field strength ; Electric Stimulation Therapy - methods ; Electrically conductive ; Electricity ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; Hydrogels ; Hydrogels - chemistry ; Kinetics ; Linear Models ; Models, Chemical ; Particle Size ; Polymerization ; Polymers - chemistry ; Spectrophotometry, Infrared ; Thermography ; Thermogravimetry</subject><ispartof>The journal of physical chemistry. B, 2014-08, Vol.118 (31), p.9263-9271</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f66c0f4f7394633b8561c2a708f1a251e93d64dedfc45dbdcfcfd3ccdcd6df2f3</citedby><cites>FETCH-LOGICAL-a348t-f66c0f4f7394633b8561c2a708f1a251e93d64dedfc45dbdcfcfd3ccdcd6df2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp502674f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp502674f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25059579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paradee, Nophawan</creatorcontrib><creatorcontrib>Sirivat, Anuvat</creatorcontrib><title>Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A drug-loaded conductive polymer/hydrogel blend, benzoic acid-loaded poly(3,4-ethylenedioxythiophene/alginate (BA-loaded PEDOT/Alg) hydrogel, was used as a carrier/matrix for an electrical stimuli transdermal drug delivery system (TDDS). The effects of cross-linking ratio, PEDOT particle size, and electric field strength on the release mechanism and the diffusion coefficient (D) of BA were examined by using a modified Franz-diffusion cell. The diffusion scaling exponent value of BA is close to 0.5 which refers to the diffusion controlled mechanism, or the Fickian diffusion as the BA release mechanism. The D increased when there was a decrease in the cross-linking ratio due to the mesh size-hindering effect. When increasing electric field strength, the D of BA-loaded PEDOT/Alg hydrogel increased because the cathode–BA– electrorepulsion, electroinduced alginate expansion, and PEDOT electroneutralization simultaneously occurred. The highest D belonged to a blend with the smallest PEDOT particle and highest electrical conductivity. The D of BA was a function of the matrix mesh size except when drug size/mesh size was lower than 2.38 × 10–3, where D of BA became mesh size independent as the matrix mesh size was extremely large. Thus, the fabricated conductive polymer hydrogel blends have a great potential to be used in TDDS under electrical stimulation.</description><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Benzoic Acid - chemistry</subject><subject>Blends</subject><subject>Bridged Bicyclo Compounds, Heterocyclic - chemistry</subject><subject>Crosslinking</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Diffusion</subject><subject>Drug delivery systems</subject><subject>Electric field strength</subject><subject>Electric Stimulation Therapy - methods</subject><subject>Electrically conductive</subject><subject>Electricity</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Kinetics</subject><subject>Linear Models</subject><subject>Models, Chemical</subject><subject>Particle Size</subject><subject>Polymerization</subject><subject>Polymers - chemistry</subject><subject>Spectrophotometry, Infrared</subject><subject>Thermography</subject><subject>Thermogravimetry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd9qVDEQh4MotlYvfAHJjdBCT5v_2fVuXdZaaFFErw_ZZNLNkj05JudIjy_ka5qya6-EXgwzAx_fwPwQekvJBSWMXm57SZjSwj9Dx1Qy0tTSzw-zokQdoVelbAlhks3US3TEJJFzqefH6M8qgh1ysCbGCS9TN-QUIzj8DSKYAjh5_BG63ylYvLDBYZ_TDn9NcTrl56KBYTNF6MCFdD8Nm5D6Td3OLhfxLnRmAHxrqvz-A155X-882OoNN9oh_IInNfg25X6TYrqbXqMX3sQCbw79BP34tPq-_NzcfLm6Xi5uGsPFbGi8UpZ44TWfC8X5eiYVtcxoMvPUMElhzp0SDpy3Qrq1s956x6111innmecn6HTv7XP6OUIZ2l0oFmI0HaSxtFQrRqQSSj-NSsm41kKrip7tUZtTKRl82-ewM3lqKWkfImwfI6zsu4N2XO_APZL_MqvA-z1gbGm3acxdfch_RH8BqammMg</recordid><startdate>20140807</startdate><enddate>20140807</enddate><creator>Paradee, Nophawan</creator><creator>Sirivat, Anuvat</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140807</creationdate><title>Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology</title><author>Paradee, Nophawan ; Sirivat, Anuvat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f66c0f4f7394633b8561c2a708f1a251e93d64dedfc45dbdcfcfd3ccdcd6df2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Benzoic Acid - chemistry</topic><topic>Blends</topic><topic>Bridged Bicyclo Compounds, Heterocyclic - chemistry</topic><topic>Crosslinking</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Diffusion</topic><topic>Drug delivery systems</topic><topic>Electric field strength</topic><topic>Electric Stimulation Therapy - methods</topic><topic>Electrically conductive</topic><topic>Electricity</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Kinetics</topic><topic>Linear Models</topic><topic>Models, Chemical</topic><topic>Particle Size</topic><topic>Polymerization</topic><topic>Polymers - chemistry</topic><topic>Spectrophotometry, Infrared</topic><topic>Thermography</topic><topic>Thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paradee, Nophawan</creatorcontrib><creatorcontrib>Sirivat, Anuvat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paradee, Nophawan</au><au>Sirivat, Anuvat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2014-08-07</date><risdate>2014</risdate><volume>118</volume><issue>31</issue><spage>9263</spage><epage>9271</epage><pages>9263-9271</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A drug-loaded conductive polymer/hydrogel blend, benzoic acid-loaded poly(3,4-ethylenedioxythiophene/alginate (BA-loaded PEDOT/Alg) hydrogel, was used as a carrier/matrix for an electrical stimuli transdermal drug delivery system (TDDS). The effects of cross-linking ratio, PEDOT particle size, and electric field strength on the release mechanism and the diffusion coefficient (D) of BA were examined by using a modified Franz-diffusion cell. The diffusion scaling exponent value of BA is close to 0.5 which refers to the diffusion controlled mechanism, or the Fickian diffusion as the BA release mechanism. The D increased when there was a decrease in the cross-linking ratio due to the mesh size-hindering effect. When increasing electric field strength, the D of BA-loaded PEDOT/Alg hydrogel increased because the cathode–BA– electrorepulsion, electroinduced alginate expansion, and PEDOT electroneutralization simultaneously occurred. The highest D belonged to a blend with the smallest PEDOT particle and highest electrical conductivity. The D of BA was a function of the matrix mesh size except when drug size/mesh size was lower than 2.38 × 10–3, where D of BA became mesh size independent as the matrix mesh size was extremely large. Thus, the fabricated conductive polymer hydrogel blends have a great potential to be used in TDDS under electrical stimulation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25059579</pmid><doi>10.1021/jp502674f</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2014-08, Vol.118 (31), p.9263-9271 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762056467 |
source | MEDLINE; American Chemical Society Journals |
subjects | Alginates Alginates - chemistry Benzoic Acid - chemistry Blends Bridged Bicyclo Compounds, Heterocyclic - chemistry Crosslinking Delayed-Action Preparations - chemistry Diffusion Drug delivery systems Electric field strength Electric Stimulation Therapy - methods Electrically conductive Electricity Glucuronic Acid - chemistry Hexuronic Acids - chemistry Hydrogels Hydrogels - chemistry Kinetics Linear Models Models, Chemical Particle Size Polymerization Polymers - chemistry Spectrophotometry, Infrared Thermography Thermogravimetry |
title | Electrically Controlled Release of Benzoic Acid from Poly(3,4-ethylenedioxythiophene)/Alginate Matrix: Effect of Conductive Poly(3,4-ethylenedioxythiophene) Morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrically%20Controlled%20Release%20of%20Benzoic%20Acid%20from%20Poly(3,4-ethylenedioxythiophene)/Alginate%20Matrix:%20Effect%20of%20Conductive%20Poly(3,4-ethylenedioxythiophene)%20Morphology&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Paradee,%20Nophawan&rft.date=2014-08-07&rft.volume=118&rft.issue=31&rft.spage=9263&rft.epage=9271&rft.pages=9263-9271&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp502674f&rft_dat=%3Cproquest_cross%3E1762056467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1552377476&rft_id=info:pmid/25059579&rfr_iscdi=true |