Interaction of the Rattlesnake Toxin Crotamine with Model Membranes
Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobi...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2014-05, Vol.118 (20), p.5471-5479 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5479 |
---|---|
container_issue | 20 |
container_start_page | 5471 |
container_title | The journal of physical chemistry. B |
container_volume | 118 |
creator | Costa, Bruno A. Sanches, Leonardo Gomide, Andreza Barbosa Bizerra, Fernando Dal Mas, Caroline Oliveira, Eduardo B. Perez, Katia Regina Itri, Rosangela Oguiura, Nancy Hayashi, Mirian A. F. |
description | Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm. |
doi_str_mv | 10.1021/jp411886u |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762055180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1528340962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMobk4P_gHJRdBDNUnz1aMUPwYbgsxzSduUdbbJTFLUf2-kcyfBQ3hzeHh43weAc4xuMCL4drOlGEvJhwMwxYygJD5xuPtzjPgEnHi_QYgwIvkxmBAqGGWCTkE-N0E7VYXWGmgbGNYavqgQOu2NetNwZT9bA3Nng-pbo-FHG9ZwaWvdwaXuS6eM9qfgqFGd12e7OQOvD_er_ClZPD_O87tFolIqQ8KFSlkjGiVqWSpcpyRDTHCkK0plXaWoRBQLJLiss0bINGtUxkm8j0nBMkHSGbgavVtn3wftQ9G3vtJdF5ewgy-wiDhjWKL_0RgipSj6I3o9opWz3jvdFFvX9sp9FRgVP3mLfd7IXuy0Q9nrek_-9ozA5QioyhcbOzgTg_wh-gZmbH62</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528340962</pqid></control><display><type>article</type><title>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Costa, Bruno A. ; Sanches, Leonardo ; Gomide, Andreza Barbosa ; Bizerra, Fernando ; Dal Mas, Caroline ; Oliveira, Eduardo B. ; Perez, Katia Regina ; Itri, Rosangela ; Oguiura, Nancy ; Hayashi, Mirian A. F.</creator><creatorcontrib>Costa, Bruno A. ; Sanches, Leonardo ; Gomide, Andreza Barbosa ; Bizerra, Fernando ; Dal Mas, Caroline ; Oliveira, Eduardo B. ; Perez, Katia Regina ; Itri, Rosangela ; Oguiura, Nancy ; Hayashi, Mirian A. F.</creatorcontrib><description>Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp411886u</identifier><identifier>PMID: 24754574</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Antifungal Agents - pharmacology ; Antiinfectives and antibacterials ; Bacteria ; Biofilms ; Candida ; Crotalid Venoms - chemistry ; Crotalid Venoms - metabolism ; Crotalid Venoms - toxicity ; Crotalus - metabolism ; Fungi ; Fungi - drug effects ; Gram-Negative Bacteria - drug effects ; Gram-Positive Bacteria - drug effects ; Membranes ; Microscopy ; Molecular Sequence Data ; Toxins ; Unilamellar Liposomes - chemistry ; Unilamellar Liposomes - metabolism ; Vesicles</subject><ispartof>The journal of physical chemistry. B, 2014-05, Vol.118 (20), p.5471-5479</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</citedby><cites>FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp411886u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp411886u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24754574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Bruno A.</creatorcontrib><creatorcontrib>Sanches, Leonardo</creatorcontrib><creatorcontrib>Gomide, Andreza Barbosa</creatorcontrib><creatorcontrib>Bizerra, Fernando</creatorcontrib><creatorcontrib>Dal Mas, Caroline</creatorcontrib><creatorcontrib>Oliveira, Eduardo B.</creatorcontrib><creatorcontrib>Perez, Katia Regina</creatorcontrib><creatorcontrib>Itri, Rosangela</creatorcontrib><creatorcontrib>Oguiura, Nancy</creatorcontrib><creatorcontrib>Hayashi, Mirian A. F.</creatorcontrib><title>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Candida</subject><subject>Crotalid Venoms - chemistry</subject><subject>Crotalid Venoms - metabolism</subject><subject>Crotalid Venoms - toxicity</subject><subject>Crotalus - metabolism</subject><subject>Fungi</subject><subject>Fungi - drug effects</subject><subject>Gram-Negative Bacteria - drug effects</subject><subject>Gram-Positive Bacteria - drug effects</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular Sequence Data</subject><subject>Toxins</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Unilamellar Liposomes - metabolism</subject><subject>Vesicles</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LwzAYgIMobk4P_gHJRdBDNUnz1aMUPwYbgsxzSduUdbbJTFLUf2-kcyfBQ3hzeHh43weAc4xuMCL4drOlGEvJhwMwxYygJD5xuPtzjPgEnHi_QYgwIvkxmBAqGGWCTkE-N0E7VYXWGmgbGNYavqgQOu2NetNwZT9bA3Nng-pbo-FHG9ZwaWvdwaXuS6eM9qfgqFGd12e7OQOvD_er_ClZPD_O87tFolIqQ8KFSlkjGiVqWSpcpyRDTHCkK0plXaWoRBQLJLiss0bINGtUxkm8j0nBMkHSGbgavVtn3wftQ9G3vtJdF5ewgy-wiDhjWKL_0RgipSj6I3o9opWz3jvdFFvX9sp9FRgVP3mLfd7IXuy0Q9nrek_-9ozA5QioyhcbOzgTg_wh-gZmbH62</recordid><startdate>20140522</startdate><enddate>20140522</enddate><creator>Costa, Bruno A.</creator><creator>Sanches, Leonardo</creator><creator>Gomide, Andreza Barbosa</creator><creator>Bizerra, Fernando</creator><creator>Dal Mas, Caroline</creator><creator>Oliveira, Eduardo B.</creator><creator>Perez, Katia Regina</creator><creator>Itri, Rosangela</creator><creator>Oguiura, Nancy</creator><creator>Hayashi, Mirian A. F.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140522</creationdate><title>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</title><author>Costa, Bruno A. ; Sanches, Leonardo ; Gomide, Andreza Barbosa ; Bizerra, Fernando ; Dal Mas, Caroline ; Oliveira, Eduardo B. ; Perez, Katia Regina ; Itri, Rosangela ; Oguiura, Nancy ; Hayashi, Mirian A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Candida</topic><topic>Crotalid Venoms - chemistry</topic><topic>Crotalid Venoms - metabolism</topic><topic>Crotalid Venoms - toxicity</topic><topic>Crotalus - metabolism</topic><topic>Fungi</topic><topic>Fungi - drug effects</topic><topic>Gram-Negative Bacteria - drug effects</topic><topic>Gram-Positive Bacteria - drug effects</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular Sequence Data</topic><topic>Toxins</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Unilamellar Liposomes - metabolism</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Bruno A.</creatorcontrib><creatorcontrib>Sanches, Leonardo</creatorcontrib><creatorcontrib>Gomide, Andreza Barbosa</creatorcontrib><creatorcontrib>Bizerra, Fernando</creatorcontrib><creatorcontrib>Dal Mas, Caroline</creatorcontrib><creatorcontrib>Oliveira, Eduardo B.</creatorcontrib><creatorcontrib>Perez, Katia Regina</creatorcontrib><creatorcontrib>Itri, Rosangela</creatorcontrib><creatorcontrib>Oguiura, Nancy</creatorcontrib><creatorcontrib>Hayashi, Mirian A. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Bruno A.</au><au>Sanches, Leonardo</au><au>Gomide, Andreza Barbosa</au><au>Bizerra, Fernando</au><au>Dal Mas, Caroline</au><au>Oliveira, Eduardo B.</au><au>Perez, Katia Regina</au><au>Itri, Rosangela</au><au>Oguiura, Nancy</au><au>Hayashi, Mirian A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2014-05-22</date><risdate>2014</risdate><volume>118</volume><issue>20</issue><spage>5471</spage><epage>5479</epage><pages>5471-5479</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24754574</pmid><doi>10.1021/jp411886u</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2014-05, Vol.118 (20), p.5471-5479 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762055180 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Animals Antifungal Agents - pharmacology Antiinfectives and antibacterials Bacteria Biofilms Candida Crotalid Venoms - chemistry Crotalid Venoms - metabolism Crotalid Venoms - toxicity Crotalus - metabolism Fungi Fungi - drug effects Gram-Negative Bacteria - drug effects Gram-Positive Bacteria - drug effects Membranes Microscopy Molecular Sequence Data Toxins Unilamellar Liposomes - chemistry Unilamellar Liposomes - metabolism Vesicles |
title | Interaction of the Rattlesnake Toxin Crotamine with Model Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20the%20Rattlesnake%20Toxin%20Crotamine%20with%20Model%20Membranes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Costa,%20Bruno%20A.&rft.date=2014-05-22&rft.volume=118&rft.issue=20&rft.spage=5471&rft.epage=5479&rft.pages=5471-5479&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp411886u&rft_dat=%3Cproquest_cross%3E1528340962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528340962&rft_id=info:pmid/24754574&rfr_iscdi=true |