Interaction of the Rattlesnake Toxin Crotamine with Model Membranes

Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-05, Vol.118 (20), p.5471-5479
Hauptverfasser: Costa, Bruno A., Sanches, Leonardo, Gomide, Andreza Barbosa, Bizerra, Fernando, Dal Mas, Caroline, Oliveira, Eduardo B., Perez, Katia Regina, Itri, Rosangela, Oguiura, Nancy, Hayashi, Mirian A. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5479
container_issue 20
container_start_page 5471
container_title The journal of physical chemistry. B
container_volume 118
creator Costa, Bruno A.
Sanches, Leonardo
Gomide, Andreza Barbosa
Bizerra, Fernando
Dal Mas, Caroline
Oliveira, Eduardo B.
Perez, Katia Regina
Itri, Rosangela
Oguiura, Nancy
Hayashi, Mirian A. F.
description Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.
doi_str_mv 10.1021/jp411886u
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762055180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1528340962</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMobk4P_gHJRdBDNUnz1aMUPwYbgsxzSduUdbbJTFLUf2-kcyfBQ3hzeHh43weAc4xuMCL4drOlGEvJhwMwxYygJD5xuPtzjPgEnHi_QYgwIvkxmBAqGGWCTkE-N0E7VYXWGmgbGNYavqgQOu2NetNwZT9bA3Nng-pbo-FHG9ZwaWvdwaXuS6eM9qfgqFGd12e7OQOvD_er_ClZPD_O87tFolIqQ8KFSlkjGiVqWSpcpyRDTHCkK0plXaWoRBQLJLiss0bINGtUxkm8j0nBMkHSGbgavVtn3wftQ9G3vtJdF5ewgy-wiDhjWKL_0RgipSj6I3o9opWz3jvdFFvX9sp9FRgVP3mLfd7IXuy0Q9nrek_-9ozA5QioyhcbOzgTg_wh-gZmbH62</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528340962</pqid></control><display><type>article</type><title>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Costa, Bruno A. ; Sanches, Leonardo ; Gomide, Andreza Barbosa ; Bizerra, Fernando ; Dal Mas, Caroline ; Oliveira, Eduardo B. ; Perez, Katia Regina ; Itri, Rosangela ; Oguiura, Nancy ; Hayashi, Mirian A. F.</creator><creatorcontrib>Costa, Bruno A. ; Sanches, Leonardo ; Gomide, Andreza Barbosa ; Bizerra, Fernando ; Dal Mas, Caroline ; Oliveira, Eduardo B. ; Perez, Katia Regina ; Itri, Rosangela ; Oguiura, Nancy ; Hayashi, Mirian A. F.</creatorcontrib><description>Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp411886u</identifier><identifier>PMID: 24754574</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Antifungal Agents - pharmacology ; Antiinfectives and antibacterials ; Bacteria ; Biofilms ; Candida ; Crotalid Venoms - chemistry ; Crotalid Venoms - metabolism ; Crotalid Venoms - toxicity ; Crotalus - metabolism ; Fungi ; Fungi - drug effects ; Gram-Negative Bacteria - drug effects ; Gram-Positive Bacteria - drug effects ; Membranes ; Microscopy ; Molecular Sequence Data ; Toxins ; Unilamellar Liposomes - chemistry ; Unilamellar Liposomes - metabolism ; Vesicles</subject><ispartof>The journal of physical chemistry. B, 2014-05, Vol.118 (20), p.5471-5479</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</citedby><cites>FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp411886u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp411886u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24754574$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Costa, Bruno A.</creatorcontrib><creatorcontrib>Sanches, Leonardo</creatorcontrib><creatorcontrib>Gomide, Andreza Barbosa</creatorcontrib><creatorcontrib>Bizerra, Fernando</creatorcontrib><creatorcontrib>Dal Mas, Caroline</creatorcontrib><creatorcontrib>Oliveira, Eduardo B.</creatorcontrib><creatorcontrib>Perez, Katia Regina</creatorcontrib><creatorcontrib>Itri, Rosangela</creatorcontrib><creatorcontrib>Oguiura, Nancy</creatorcontrib><creatorcontrib>Hayashi, Mirian A. F.</creatorcontrib><title>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antifungal Agents - pharmacology</subject><subject>Antiinfectives and antibacterials</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Candida</subject><subject>Crotalid Venoms - chemistry</subject><subject>Crotalid Venoms - metabolism</subject><subject>Crotalid Venoms - toxicity</subject><subject>Crotalus - metabolism</subject><subject>Fungi</subject><subject>Fungi - drug effects</subject><subject>Gram-Negative Bacteria - drug effects</subject><subject>Gram-Positive Bacteria - drug effects</subject><subject>Membranes</subject><subject>Microscopy</subject><subject>Molecular Sequence Data</subject><subject>Toxins</subject><subject>Unilamellar Liposomes - chemistry</subject><subject>Unilamellar Liposomes - metabolism</subject><subject>Vesicles</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LwzAYgIMobk4P_gHJRdBDNUnz1aMUPwYbgsxzSduUdbbJTFLUf2-kcyfBQ3hzeHh43weAc4xuMCL4drOlGEvJhwMwxYygJD5xuPtzjPgEnHi_QYgwIvkxmBAqGGWCTkE-N0E7VYXWGmgbGNYavqgQOu2NetNwZT9bA3Nng-pbo-FHG9ZwaWvdwaXuS6eM9qfgqFGd12e7OQOvD_er_ClZPD_O87tFolIqQ8KFSlkjGiVqWSpcpyRDTHCkK0plXaWoRBQLJLiss0bINGtUxkm8j0nBMkHSGbgavVtn3wftQ9G3vtJdF5ewgy-wiDhjWKL_0RgipSj6I3o9opWz3jvdFFvX9sp9FRgVP3mLfd7IXuy0Q9nrek_-9ozA5QioyhcbOzgTg_wh-gZmbH62</recordid><startdate>20140522</startdate><enddate>20140522</enddate><creator>Costa, Bruno A.</creator><creator>Sanches, Leonardo</creator><creator>Gomide, Andreza Barbosa</creator><creator>Bizerra, Fernando</creator><creator>Dal Mas, Caroline</creator><creator>Oliveira, Eduardo B.</creator><creator>Perez, Katia Regina</creator><creator>Itri, Rosangela</creator><creator>Oguiura, Nancy</creator><creator>Hayashi, Mirian A. F.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140522</creationdate><title>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</title><author>Costa, Bruno A. ; Sanches, Leonardo ; Gomide, Andreza Barbosa ; Bizerra, Fernando ; Dal Mas, Caroline ; Oliveira, Eduardo B. ; Perez, Katia Regina ; Itri, Rosangela ; Oguiura, Nancy ; Hayashi, Mirian A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-67a35f7fa7d8ba1d32905760ec448dc30b04170768d9f7839fa96202158759723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antifungal Agents - pharmacology</topic><topic>Antiinfectives and antibacterials</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Candida</topic><topic>Crotalid Venoms - chemistry</topic><topic>Crotalid Venoms - metabolism</topic><topic>Crotalid Venoms - toxicity</topic><topic>Crotalus - metabolism</topic><topic>Fungi</topic><topic>Fungi - drug effects</topic><topic>Gram-Negative Bacteria - drug effects</topic><topic>Gram-Positive Bacteria - drug effects</topic><topic>Membranes</topic><topic>Microscopy</topic><topic>Molecular Sequence Data</topic><topic>Toxins</topic><topic>Unilamellar Liposomes - chemistry</topic><topic>Unilamellar Liposomes - metabolism</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Costa, Bruno A.</creatorcontrib><creatorcontrib>Sanches, Leonardo</creatorcontrib><creatorcontrib>Gomide, Andreza Barbosa</creatorcontrib><creatorcontrib>Bizerra, Fernando</creatorcontrib><creatorcontrib>Dal Mas, Caroline</creatorcontrib><creatorcontrib>Oliveira, Eduardo B.</creatorcontrib><creatorcontrib>Perez, Katia Regina</creatorcontrib><creatorcontrib>Itri, Rosangela</creatorcontrib><creatorcontrib>Oguiura, Nancy</creatorcontrib><creatorcontrib>Hayashi, Mirian A. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Costa, Bruno A.</au><au>Sanches, Leonardo</au><au>Gomide, Andreza Barbosa</au><au>Bizerra, Fernando</au><au>Dal Mas, Caroline</au><au>Oliveira, Eduardo B.</au><au>Perez, Katia Regina</au><au>Itri, Rosangela</au><au>Oguiura, Nancy</au><au>Hayashi, Mirian A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of the Rattlesnake Toxin Crotamine with Model Membranes</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2014-05-22</date><risdate>2014</risdate><volume>118</volume><issue>20</issue><spage>5471</spage><epage>5479</epage><pages>5471-5479</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>Crotamine is one of the main constituents of the venom of the South American rattlesnake Crotalus durissus terrificus. A common gene ancestry and structural similarity with the antimicrobial β-defensins (identical disulfide bond pattern and highly positive net charge) suggested potential antimicrobial activities for this snake toxin. Although crotamine demonstrated low activity against both Gram-positive and Gram-negative bacteria, a pronounced antifungal activity was observed against Candida spp., Trichosporon spp., and Cryptococcus neoformans. Crotamine’s selective antimicrobial properties, with no observable hemolytic activity, stimulated us to evaluate the potential applications of this polypeptide as an antiyeast or candicidal agent for medical and industrial application. Aiming to understand the mechanism(s) of action underlying crotamine antimicrobial activity and its selectivity for fungi, we present herein studies using membrane model systems (i.e., large unilamellar vesicles, LUVs, and giant unilamellar vesicles, GUVs), with different phospholipid compositions. We show here that crotamine presents a higher lytic activity on negatively charged membranes compared with neutral membranes, with or without cholesterol or ergosterol content. The vesicle burst was not preceded by membrane permeabilization as is generally observed for pore forming peptides. Although such a property of disrupting lipid membranes is very important to combat multiresistant fungi, no inhibitory activity was observed for crotamine against biofilms formed by several Candida spp. strains, except for a limited effect against C. krusei biofilm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24754574</pmid><doi>10.1021/jp411886u</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2014-05, Vol.118 (20), p.5471-5479
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1762055180
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Animals
Antifungal Agents - pharmacology
Antiinfectives and antibacterials
Bacteria
Biofilms
Candida
Crotalid Venoms - chemistry
Crotalid Venoms - metabolism
Crotalid Venoms - toxicity
Crotalus - metabolism
Fungi
Fungi - drug effects
Gram-Negative Bacteria - drug effects
Gram-Positive Bacteria - drug effects
Membranes
Microscopy
Molecular Sequence Data
Toxins
Unilamellar Liposomes - chemistry
Unilamellar Liposomes - metabolism
Vesicles
title Interaction of the Rattlesnake Toxin Crotamine with Model Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20the%20Rattlesnake%20Toxin%20Crotamine%20with%20Model%20Membranes&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Costa,%20Bruno%20A.&rft.date=2014-05-22&rft.volume=118&rft.issue=20&rft.spage=5471&rft.epage=5479&rft.pages=5471-5479&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp411886u&rft_dat=%3Cproquest_cross%3E1528340962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1528340962&rft_id=info:pmid/24754574&rfr_iscdi=true