How Accurately Do Current Force Fields Predict Experimental Peptide Conformations? An Adiabatic Free Energy Dynamics Study

The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2014-06, Vol.118 (24), p.6539-6552
Hauptverfasser: Tzanov, Alexandar T, Cuendet, Michel A, Tuckerman, Mark E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6552
container_issue 24
container_start_page 6539
container_title The journal of physical chemistry. B
container_volume 118
creator Tzanov, Alexandar T
Cuendet, Michel A
Tuckerman, Mark E
description The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR–UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.
doi_str_mv 10.1021/jp500193w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762055026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1539470765</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-f62b483b3065e88273c9554b295648d03dbccc219b550b40aee07fe0c7d2626d3</originalsourceid><addsrcrecordid>eNqFkU9LxDAQxYMo_j_4BSQXQQ-rk7RJ25Ms664KCy6o55ImU-nSNjVpWddPb2RXT4KHYWaY37zDe4ScMbhmwNnNshMALItWO-SQCQ6jUMnudpYM5AE58n4JwAVP5T454LHkkIE4JJ8PdkXHWg9O9Viv6Z2lk8E5bHs6s04jnVVYG08XDk2lezr96NBVTbirmi6w6yuDdGLb0rpG9ZVt_S0dt3RsKlWEXdOZQ6TTFt1bEF-3qqm0p8_9YNYnZK9UtcfTbT8mr7Ppy-RhNH-6f5yM5yMVs7gflZIXcRoVEUiBacqTSGdCxAXPhIxTA5EptNacZYUQUMSgECEpEXRiuOTSRMfkcqPbOfs-oO_zpvIa61q1aAefsySYEX65_B8VURYnkEgR0KsNqp313mGZd8EX5dY5g_w7lfw3lcCeb2WHokHzS_7EEICLDaC0z5d2cG0w5A-hL4Akkv8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1539470765</pqid></control><display><type>article</type><title>How Accurately Do Current Force Fields Predict Experimental Peptide Conformations? An Adiabatic Free Energy Dynamics Study</title><source>ACS Publications</source><source>MEDLINE</source><creator>Tzanov, Alexandar T ; Cuendet, Michel A ; Tuckerman, Mark E</creator><creatorcontrib>Tzanov, Alexandar T ; Cuendet, Michel A ; Tuckerman, Mark E</creatorcontrib><description>The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR–UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp500193w</identifier><identifier>PMID: 24620905</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adiabatic flow ; Algorithms ; Dipeptides - chemistry ; Dipeptides - metabolism ; Dynamics ; Free energy ; Gas phases ; Gases - chemistry ; Mathematical analysis ; Molecular Dynamics Simulation ; Peptides ; Populations ; Protein Conformation ; Sampling ; Solutions - chemistry ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2014-06, Vol.118 (24), p.6539-6552</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-f62b483b3065e88273c9554b295648d03dbccc219b550b40aee07fe0c7d2626d3</citedby><cites>FETCH-LOGICAL-a414t-f62b483b3065e88273c9554b295648d03dbccc219b550b40aee07fe0c7d2626d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp500193w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp500193w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24620905$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzanov, Alexandar T</creatorcontrib><creatorcontrib>Cuendet, Michel A</creatorcontrib><creatorcontrib>Tuckerman, Mark E</creatorcontrib><title>How Accurately Do Current Force Fields Predict Experimental Peptide Conformations? An Adiabatic Free Energy Dynamics Study</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR–UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.</description><subject>Adiabatic flow</subject><subject>Algorithms</subject><subject>Dipeptides - chemistry</subject><subject>Dipeptides - metabolism</subject><subject>Dynamics</subject><subject>Free energy</subject><subject>Gas phases</subject><subject>Gases - chemistry</subject><subject>Mathematical analysis</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Populations</subject><subject>Protein Conformation</subject><subject>Sampling</subject><subject>Solutions - chemistry</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9LxDAQxYMo_j_4BSQXQQ-rk7RJ25Ms664KCy6o55ImU-nSNjVpWddPb2RXT4KHYWaY37zDe4ScMbhmwNnNshMALItWO-SQCQ6jUMnudpYM5AE58n4JwAVP5T454LHkkIE4JJ8PdkXHWg9O9Viv6Z2lk8E5bHs6s04jnVVYG08XDk2lezr96NBVTbirmi6w6yuDdGLb0rpG9ZVt_S0dt3RsKlWEXdOZQ6TTFt1bEF-3qqm0p8_9YNYnZK9UtcfTbT8mr7Ppy-RhNH-6f5yM5yMVs7gflZIXcRoVEUiBacqTSGdCxAXPhIxTA5EptNacZYUQUMSgECEpEXRiuOTSRMfkcqPbOfs-oO_zpvIa61q1aAefsySYEX65_B8VURYnkEgR0KsNqp313mGZd8EX5dY5g_w7lfw3lcCeb2WHokHzS_7EEICLDaC0z5d2cG0w5A-hL4Akkv8</recordid><startdate>20140619</startdate><enddate>20140619</enddate><creator>Tzanov, Alexandar T</creator><creator>Cuendet, Michel A</creator><creator>Tuckerman, Mark E</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140619</creationdate><title>How Accurately Do Current Force Fields Predict Experimental Peptide Conformations? An Adiabatic Free Energy Dynamics Study</title><author>Tzanov, Alexandar T ; Cuendet, Michel A ; Tuckerman, Mark E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-f62b483b3065e88273c9554b295648d03dbccc219b550b40aee07fe0c7d2626d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adiabatic flow</topic><topic>Algorithms</topic><topic>Dipeptides - chemistry</topic><topic>Dipeptides - metabolism</topic><topic>Dynamics</topic><topic>Free energy</topic><topic>Gas phases</topic><topic>Gases - chemistry</topic><topic>Mathematical analysis</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Populations</topic><topic>Protein Conformation</topic><topic>Sampling</topic><topic>Solutions - chemistry</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzanov, Alexandar T</creatorcontrib><creatorcontrib>Cuendet, Michel A</creatorcontrib><creatorcontrib>Tuckerman, Mark E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tzanov, Alexandar T</au><au>Cuendet, Michel A</au><au>Tuckerman, Mark E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Accurately Do Current Force Fields Predict Experimental Peptide Conformations? An Adiabatic Free Energy Dynamics Study</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2014-06-19</date><risdate>2014</risdate><volume>118</volume><issue>24</issue><spage>6539</spage><epage>6552</epage><pages>6539-6552</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The quality of classical biomolecular simulations is inevitably limited by two problems: the accuracy of the force field used and the comprehensiveness of configuration space sampling. In this work we tackle the sampling problem by carrying out driven adiabatic free energy dynamics to obtain converged free energy surfaces of dipeptides in the gas phase and in solution using selected dihedral angles as collective variables. To calculate populations of conformational macrostates observed in experiment, we introduce a fuzzy clustering algorithm in collective-variable space, which delineates macrostates without prior definition of arbitrary boundaries. With this approach, we calculate the conformational preferences of small peptides with six biomolecular force fields chosen from among the most recent and widely used. We assess the accuracy of each force field against recently published Raman or IR–UV spectroscopy measurements of conformer populations for the dipeptides in solution or in the gas phase.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24620905</pmid><doi>10.1021/jp500193w</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2014-06, Vol.118 (24), p.6539-6552
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_1762055026
source ACS Publications; MEDLINE
subjects Adiabatic flow
Algorithms
Dipeptides - chemistry
Dipeptides - metabolism
Dynamics
Free energy
Gas phases
Gases - chemistry
Mathematical analysis
Molecular Dynamics Simulation
Peptides
Populations
Protein Conformation
Sampling
Solutions - chemistry
Thermodynamics
title How Accurately Do Current Force Fields Predict Experimental Peptide Conformations? An Adiabatic Free Energy Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A44%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Accurately%20Do%20Current%20Force%20Fields%20Predict%20Experimental%20Peptide%20Conformations?%20An%20Adiabatic%20Free%20Energy%20Dynamics%20Study&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Tzanov,%20Alexandar%20T&rft.date=2014-06-19&rft.volume=118&rft.issue=24&rft.spage=6539&rft.epage=6552&rft.pages=6539-6552&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp500193w&rft_dat=%3Cproquest_cross%3E1539470765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1539470765&rft_id=info:pmid/24620905&rfr_iscdi=true