Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities

Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-05, Vol.14 (5), p.2854-2860
Hauptverfasser: Weber, P, Güttinger, J, Tsioutsios, I, Chang, D. E, Bachtold, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2860
container_issue 5
container_start_page 2854
container_title Nano letters
container_volume 14
creator Weber, P
Güttinger, J
Tsioutsios, I
Chang, D. E
Bachtold, A
description Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.
doi_str_mv 10.1021/nl500879k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762054564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524821509</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EolBY8AMoGyRYFMaOnccSRVCQWiHxWEcTx6YpqR3spIi_J1VLu0FiNbM4947mEHJG4ZoCozemFgBJnH7skSMqQhhFacr2t3vCB-TY-zkApKGAQzJgPOYigfCITDPbNXVl3oOxw2amjAqmSs7QVBLr4Fl5a7C1zgetDV66RjlpTdnJdpWYVtLZL1yqIMNl1VbKn5ADjbVXp5s5JG_3d6_Zw2jyNH7Mbicj5HHajkRIi1IXOmWRjBFjVhZMc63LSNMoZClNoBRlAVHEQ1QFB5ZyoVSMcdm_CxgOyeW6t3H2s1O-zReVl6qu0Sjb-ZzGEQPBRZ__FxWMJ4yKXs2QXK3R_i3vndJ546oFuu-cQr4SnW9F9-z5prYrFqrckr9me-BiA6DvVWqHRlZ-xyWCQsijHYfS53PbOdOL--PgD48dkUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524821509</pqid></control><display><type>article</type><title>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</title><source>American Chemical Society Journals</source><creator>Weber, P ; Güttinger, J ; Tsioutsios, I ; Chang, D. E ; Bachtold, A</creator><creatorcontrib>Weber, P ; Güttinger, J ; Tsioutsios, I ; Chang, D. E ; Bachtold, A</creatorcontrib><description>Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl500879k</identifier><identifier>PMID: 24745803</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Devices ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Holes ; Joining ; Materials science ; Microwaves ; Nanostructure ; Physics ; Resonators ; Specific materials ; Superconductivity</subject><ispartof>Nano letters, 2014-05, Vol.14 (5), p.2854-2860</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</citedby><cites>FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl500879k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl500879k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28510346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24745803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, P</creatorcontrib><creatorcontrib>Güttinger, J</creatorcontrib><creatorcontrib>Tsioutsios, I</creatorcontrib><creatorcontrib>Chang, D. E</creatorcontrib><creatorcontrib>Bachtold, A</creatorcontrib><title>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Holes</subject><subject>Joining</subject><subject>Materials science</subject><subject>Microwaves</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Resonators</subject><subject>Specific materials</subject><subject>Superconductivity</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EolBY8AMoGyRYFMaOnccSRVCQWiHxWEcTx6YpqR3spIi_J1VLu0FiNbM4947mEHJG4ZoCozemFgBJnH7skSMqQhhFacr2t3vCB-TY-zkApKGAQzJgPOYigfCITDPbNXVl3oOxw2amjAqmSs7QVBLr4Fl5a7C1zgetDV66RjlpTdnJdpWYVtLZL1yqIMNl1VbKn5ADjbVXp5s5JG_3d6_Zw2jyNH7Mbicj5HHajkRIi1IXOmWRjBFjVhZMc63LSNMoZClNoBRlAVHEQ1QFB5ZyoVSMcdm_CxgOyeW6t3H2s1O-zReVl6qu0Sjb-ZzGEQPBRZ__FxWMJ4yKXs2QXK3R_i3vndJ546oFuu-cQr4SnW9F9-z5prYrFqrckr9me-BiA6DvVWqHRlZ-xyWCQsijHYfS53PbOdOL--PgD48dkUU</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Weber, P</creator><creator>Güttinger, J</creator><creator>Tsioutsios, I</creator><creator>Chang, D. E</creator><creator>Bachtold, A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140514</creationdate><title>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</title><author>Weber, P ; Güttinger, J ; Tsioutsios, I ; Chang, D. E ; Bachtold, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Holes</topic><topic>Joining</topic><topic>Materials science</topic><topic>Microwaves</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Resonators</topic><topic>Specific materials</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, P</creatorcontrib><creatorcontrib>Güttinger, J</creatorcontrib><creatorcontrib>Tsioutsios, I</creatorcontrib><creatorcontrib>Chang, D. E</creatorcontrib><creatorcontrib>Bachtold, A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, P</au><au>Güttinger, J</au><au>Tsioutsios, I</au><au>Chang, D. E</au><au>Bachtold, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>14</volume><issue>5</issue><spage>2854</spage><epage>2860</epage><pages>2854-2860</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24745803</pmid><doi>10.1021/nl500879k</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-05, Vol.14 (5), p.2854-2860
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762054564
source American Chemical Society Journals
subjects Cross-disciplinary physics: materials science
rheology
Devices
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Holes
Joining
Materials science
Microwaves
Nanostructure
Physics
Resonators
Specific materials
Superconductivity
title Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Graphene%20Mechanical%20Resonators%20to%20Superconducting%20Microwave%20Cavities&rft.jtitle=Nano%20letters&rft.au=Weber,%20P&rft.date=2014-05-14&rft.volume=14&rft.issue=5&rft.spage=2854&rft.epage=2860&rft.pages=2854-2860&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl500879k&rft_dat=%3Cproquest_cross%3E1524821509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524821509&rft_id=info:pmid/24745803&rfr_iscdi=true