Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities
Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and...
Gespeichert in:
Veröffentlicht in: | Nano letters 2014-05, Vol.14 (5), p.2854-2860 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2860 |
---|---|
container_issue | 5 |
container_start_page | 2854 |
container_title | Nano letters |
container_volume | 14 |
creator | Weber, P Güttinger, J Tsioutsios, I Chang, D. E Bachtold, A |
description | Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics. |
doi_str_mv | 10.1021/nl500879k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762054564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524821509</sourcerecordid><originalsourceid>FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EolBY8AMoGyRYFMaOnccSRVCQWiHxWEcTx6YpqR3spIi_J1VLu0FiNbM4947mEHJG4ZoCozemFgBJnH7skSMqQhhFacr2t3vCB-TY-zkApKGAQzJgPOYigfCITDPbNXVl3oOxw2amjAqmSs7QVBLr4Fl5a7C1zgetDV66RjlpTdnJdpWYVtLZL1yqIMNl1VbKn5ADjbVXp5s5JG_3d6_Zw2jyNH7Mbicj5HHajkRIi1IXOmWRjBFjVhZMc63LSNMoZClNoBRlAVHEQ1QFB5ZyoVSMcdm_CxgOyeW6t3H2s1O-zReVl6qu0Sjb-ZzGEQPBRZ__FxWMJ4yKXs2QXK3R_i3vndJ546oFuu-cQr4SnW9F9-z5prYrFqrckr9me-BiA6DvVWqHRlZ-xyWCQsijHYfS53PbOdOL--PgD48dkUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524821509</pqid></control><display><type>article</type><title>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</title><source>American Chemical Society Journals</source><creator>Weber, P ; Güttinger, J ; Tsioutsios, I ; Chang, D. E ; Bachtold, A</creator><creatorcontrib>Weber, P ; Güttinger, J ; Tsioutsios, I ; Chang, D. E ; Bachtold, A</creatorcontrib><description>Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl500879k</identifier><identifier>PMID: 24745803</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Devices ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Holes ; Joining ; Materials science ; Microwaves ; Nanostructure ; Physics ; Resonators ; Specific materials ; Superconductivity</subject><ispartof>Nano letters, 2014-05, Vol.14 (5), p.2854-2860</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</citedby><cites>FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl500879k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl500879k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28510346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24745803$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, P</creatorcontrib><creatorcontrib>Güttinger, J</creatorcontrib><creatorcontrib>Tsioutsios, I</creatorcontrib><creatorcontrib>Chang, D. E</creatorcontrib><creatorcontrib>Bachtold, A</creatorcontrib><title>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Holes</subject><subject>Joining</subject><subject>Materials science</subject><subject>Microwaves</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Resonators</subject><subject>Specific materials</subject><subject>Superconductivity</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EolBY8AMoGyRYFMaOnccSRVCQWiHxWEcTx6YpqR3spIi_J1VLu0FiNbM4947mEHJG4ZoCozemFgBJnH7skSMqQhhFacr2t3vCB-TY-zkApKGAQzJgPOYigfCITDPbNXVl3oOxw2amjAqmSs7QVBLr4Fl5a7C1zgetDV66RjlpTdnJdpWYVtLZL1yqIMNl1VbKn5ADjbVXp5s5JG_3d6_Zw2jyNH7Mbicj5HHajkRIi1IXOmWRjBFjVhZMc63LSNMoZClNoBRlAVHEQ1QFB5ZyoVSMcdm_CxgOyeW6t3H2s1O-zReVl6qu0Sjb-ZzGEQPBRZ__FxWMJ4yKXs2QXK3R_i3vndJ546oFuu-cQr4SnW9F9-z5prYrFqrckr9me-BiA6DvVWqHRlZ-xyWCQsijHYfS53PbOdOL--PgD48dkUU</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Weber, P</creator><creator>Güttinger, J</creator><creator>Tsioutsios, I</creator><creator>Chang, D. E</creator><creator>Bachtold, A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140514</creationdate><title>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</title><author>Weber, P ; Güttinger, J ; Tsioutsios, I ; Chang, D. E ; Bachtold, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a479t-531bdfbf926c7aa72db2f4ffd6f16329180d5db06643aeb402945ee7a7d0210a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Holes</topic><topic>Joining</topic><topic>Materials science</topic><topic>Microwaves</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Resonators</topic><topic>Specific materials</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, P</creatorcontrib><creatorcontrib>Güttinger, J</creatorcontrib><creatorcontrib>Tsioutsios, I</creatorcontrib><creatorcontrib>Chang, D. E</creatorcontrib><creatorcontrib>Bachtold, A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, P</au><au>Güttinger, J</au><au>Tsioutsios, I</au><au>Chang, D. E</au><au>Bachtold, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-05-14</date><risdate>2014</risdate><volume>14</volume><issue>5</issue><spage>2854</spage><epage>2860</epage><pages>2854-2860</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene is an attractive material for nanomechanical devices because it allows for exceptional properties, such as high frequencies, quality factors, and low mass. An outstanding challenge, however, has been to obtain large coupling between the motion and external systems for efficient readout and manipulation. Here, we report on a novel approach, in which we capacitively couple a high-Q graphene mechanical resonator (Q ≈ 105) to a superconducting microwave cavity. The initial devices exhibit a large single-photon coupling of ∼10 Hz. Remarkably, we can electrostatically change the graphene equilibrium position and thereby tune the single photon coupling, the mechanical resonance frequency, and the sign and magnitude of the observed Duffing nonlinearity. The strong tunability opens up new possibilities, such as the tuning of the optomechanical coupling strength on a time scale faster than the inverse of the cavity line width. With realistic improvements, it should be possible to enter the regime of quantum optomechanics.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24745803</pmid><doi>10.1021/nl500879k</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-05, Vol.14 (5), p.2854-2860 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762054564 |
source | American Chemical Society Journals |
subjects | Cross-disciplinary physics: materials science rheology Devices Exact sciences and technology Fullerenes and related materials diamonds, graphite Graphene Holes Joining Materials science Microwaves Nanostructure Physics Resonators Specific materials Superconductivity |
title | Coupling Graphene Mechanical Resonators to Superconducting Microwave Cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20Graphene%20Mechanical%20Resonators%20to%20Superconducting%20Microwave%20Cavities&rft.jtitle=Nano%20letters&rft.au=Weber,%20P&rft.date=2014-05-14&rft.volume=14&rft.issue=5&rft.spage=2854&rft.epage=2860&rft.pages=2854-2860&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl500879k&rft_dat=%3Cproquest_cross%3E1524821509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524821509&rft_id=info:pmid/24745803&rfr_iscdi=true |