Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices
The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance osc...
Gespeichert in:
Veröffentlicht in: | Nano letters 2014-11, Vol.14 (11), p.6269-6274 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6274 |
---|---|
container_issue | 11 |
container_start_page | 6269 |
container_title | Nano letters |
container_volume | 14 |
creator | Gül, Ö Günel, H. Y Lüth, H Rieger, T Wenz, T Haas, F Lepsa, M Panaitov, G Grützmacher, D Schäpers, Th |
description | The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e 2/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface. |
doi_str_mv | 10.1021/nl502598s |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762054428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762054428</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-bc3aea65d56b4cc123a2c648c7b4f24f3e660c33e267a9189d37c8ec42b13053</originalsourceid><addsrcrecordid>eNqF0c1O3DAQB3ALgfhqD30BlEslOCyMP-LEx2pL2UoLHJZ75EwmxausvbUTKt6AM4_YJyGI7XKpxMlj-acZ6z-MfeFwzkHwC9_lIHJTph12yHMJE22M2N3WpTpgRyktAcDIHPbZgRgfALQ-ZMsrZ32fXdtfnvqAwTcD9tYjZbcJXdfZ3gWfMuez2WMdXZMthjXFjQvx79PzglZue8-mIdLF4p66LruxPvxxkbLv9OCQ0ie219ou0efNeczuflzeTWeT-e3Vz-m3-cQqpfpJjdKS1XmT61ohciGtQK1KLGrVCtVK0hpQShK6sIaXppEFloRK1FxCLo_Z6VvbdQy_B0p9tXIJxw9ZT2FIFS-0gFwpUX5MtVBGSg58pGdvFGNIKVJbraNb2fhYcahel1BtlzDak03boV5Rs5X_Uh_B1w2wCW3XxjFwl96dgRJMUbw7i6lahiH6Mbf_DHwBtmSc0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624933101</pqid></control><display><type>article</type><title>Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices</title><source>American Chemical Society Journals</source><creator>Gül, Ö ; Günel, H. Y ; Lüth, H ; Rieger, T ; Wenz, T ; Haas, F ; Lepsa, M ; Panaitov, G ; Grützmacher, D ; Schäpers, Th</creator><creatorcontrib>Gül, Ö ; Günel, H. Y ; Lüth, H ; Rieger, T ; Wenz, T ; Haas, F ; Lepsa, M ; Panaitov, G ; Grützmacher, D ; Schäpers, Th</creatorcontrib><description>The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e 2/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl502598s</identifier><identifier>PMID: 25300066</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Amplitudes ; Applied sciences ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electrodes ; Electronics ; Exact sciences and technology ; Gallium arsenide ; Gallium arsenides ; Indium arsenides ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Materials science ; Molecular electronics, nanoelectronics ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Oscillations ; Physics ; Quantum wires ; Reflection ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6269-6274</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-bc3aea65d56b4cc123a2c648c7b4f24f3e660c33e267a9189d37c8ec42b13053</citedby><cites>FETCH-LOGICAL-a444t-bc3aea65d56b4cc123a2c648c7b4f24f3e660c33e267a9189d37c8ec42b13053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl502598s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl502598s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29080977$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25300066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gül, Ö</creatorcontrib><creatorcontrib>Günel, H. Y</creatorcontrib><creatorcontrib>Lüth, H</creatorcontrib><creatorcontrib>Rieger, T</creatorcontrib><creatorcontrib>Wenz, T</creatorcontrib><creatorcontrib>Haas, F</creatorcontrib><creatorcontrib>Lepsa, M</creatorcontrib><creatorcontrib>Panaitov, G</creatorcontrib><creatorcontrib>Grützmacher, D</creatorcontrib><creatorcontrib>Schäpers, Th</creatorcontrib><title>Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e 2/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.</description><subject>Amplitudes</subject><subject>Applied sciences</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gallium arsenide</subject><subject>Gallium arsenides</subject><subject>Indium arsenides</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Reflection</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0c1O3DAQB3ALgfhqD30BlEslOCyMP-LEx2pL2UoLHJZ75EwmxausvbUTKt6AM4_YJyGI7XKpxMlj-acZ6z-MfeFwzkHwC9_lIHJTph12yHMJE22M2N3WpTpgRyktAcDIHPbZgRgfALQ-ZMsrZ32fXdtfnvqAwTcD9tYjZbcJXdfZ3gWfMuez2WMdXZMthjXFjQvx79PzglZue8-mIdLF4p66LruxPvxxkbLv9OCQ0ie219ou0efNeczuflzeTWeT-e3Vz-m3-cQqpfpJjdKS1XmT61ohciGtQK1KLGrVCtVK0hpQShK6sIaXppEFloRK1FxCLo_Z6VvbdQy_B0p9tXIJxw9ZT2FIFS-0gFwpUX5MtVBGSg58pGdvFGNIKVJbraNb2fhYcahel1BtlzDak03boV5Rs5X_Uh_B1w2wCW3XxjFwl96dgRJMUbw7i6lahiH6Mbf_DHwBtmSc0A</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Gül, Ö</creator><creator>Günel, H. Y</creator><creator>Lüth, H</creator><creator>Rieger, T</creator><creator>Wenz, T</creator><creator>Haas, F</creator><creator>Lepsa, M</creator><creator>Panaitov, G</creator><creator>Grützmacher, D</creator><creator>Schäpers, Th</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices</title><author>Gül, Ö ; Günel, H. Y ; Lüth, H ; Rieger, T ; Wenz, T ; Haas, F ; Lepsa, M ; Panaitov, G ; Grützmacher, D ; Schäpers, Th</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-bc3aea65d56b4cc123a2c648c7b4f24f3e660c33e267a9189d37c8ec42b13053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amplitudes</topic><topic>Applied sciences</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gallium arsenide</topic><topic>Gallium arsenides</topic><topic>Indium arsenides</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Reflection</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gül, Ö</creatorcontrib><creatorcontrib>Günel, H. Y</creatorcontrib><creatorcontrib>Lüth, H</creatorcontrib><creatorcontrib>Rieger, T</creatorcontrib><creatorcontrib>Wenz, T</creatorcontrib><creatorcontrib>Haas, F</creatorcontrib><creatorcontrib>Lepsa, M</creatorcontrib><creatorcontrib>Panaitov, G</creatorcontrib><creatorcontrib>Grützmacher, D</creatorcontrib><creatorcontrib>Schäpers, Th</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gül, Ö</au><au>Günel, H. Y</au><au>Lüth, H</au><au>Rieger, T</au><au>Wenz, T</au><au>Haas, F</au><au>Lepsa, M</au><au>Panaitov, G</au><au>Grützmacher, D</au><au>Schäpers, Th</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6269</spage><epage>6274</epage><pages>6269-6274</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The magnetotransport of GaAs/InAs core/shell nanowires contacted by two superconducting Nb electrodes is investigated, where the InAs shell forms a tube-like conductive channel around the highly resistive GaAs core. By applying a magnetic field along the nanowire axis, regular magnetoconductance oscillations with an amplitude in the order of e 2/h are observed. The oscillation amplitude is found to be larger by 2 orders of magnitude compared to the measurements of a reference sample with normal metal contacts. For the Nb-contacted core/shell nanowire the oscillation period corresponds to half a flux quantum Φ0/2 = h/2e in contrast to the period of Φ0 of the reference sample. The strongly enhanced magnetoconductance oscillations are explained by phase-coherent resonant Andreev reflections at the Nb-core/shell nanowire interface.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25300066</pmid><doi>10.1021/nl502598s</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-11, Vol.14 (11), p.6269-6274 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762054428 |
source | American Chemical Society Journals |
subjects | Amplitudes Applied sciences Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electrodes Electronics Exact sciences and technology Gallium arsenide Gallium arsenides Indium arsenides Magnetic properties and materials Magnetic properties of nanostructures Materials science Molecular electronics, nanoelectronics Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanowires Oscillations Physics Quantum wires Reflection Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices |
title | Giant Magnetoconductance Oscillations in Hybrid Superconductor−Semiconductor Core/Shell Nanowire Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20Magnetoconductance%20Oscillations%20in%20Hybrid%20Superconductor%E2%88%92Semiconductor%20Core/Shell%20Nanowire%20Devices&rft.jtitle=Nano%20letters&rft.au=Gu%CC%88l,%20O%CC%88&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6269&rft.epage=6274&rft.pages=6269-6274&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl502598s&rft_dat=%3Cproquest_cross%3E1762054428%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1624933101&rft_id=info:pmid/25300066&rfr_iscdi=true |