Black Phosphorus Radio-Frequency Transistors
Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to tra...
Gespeichert in:
Veröffentlicht in: | Nano letters 2014-11, Vol.14 (11), p.6424-6429 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6429 |
---|---|
container_issue | 11 |
container_start_page | 6424 |
container_title | Nano letters |
container_volume | 14 |
creator | Wang, Han Wang, Xiaomu Xia, Fengnian Wang, Luhao Jiang, Hao Xia, Qiangfei Chin, Matthew L Dubey, Madan Han, Shu-jen |
description | Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond. |
doi_str_mv | 10.1021/nl5029717 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762054399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762054399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlYP_gHpRVBwdfK1SY5arAoFRep5SdMs3brd1Ez30H9vpLW9CJ7mHXh4Z3gIOadwS4HRu6aWwIyi6oB0qeSQ5caww13WokNOEOcAYLiEY9JhkgultOqSm4faus_-2yzgchZii_13O61CNoz-q_WNW_fH0TZY4SpEPCVHpa3Rn21nj3wMH8eD52z0-vQyuB9lliu9yozWudA5y4UFK9R0ooX2wgNjDqAsraNKO1X6lNPOpdbghCmlVFNnLJ3wHrna9C5jSF_gqlhU6Hxd28aHFguqcgZScGP-R3MmDE_viIReb1AXA2L0ZbGM1cLGdUGh-PFY7Dwm9mJb204Wfrojf8Ul4HILWHS2LpMkV-GeM6ApAN1z1mExD21skrg_Dn4D4O6DsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624936484</pqid></control><display><type>article</type><title>Black Phosphorus Radio-Frequency Transistors</title><source>ACS Publications</source><creator>Wang, Han ; Wang, Xiaomu ; Xia, Fengnian ; Wang, Luhao ; Jiang, Hao ; Xia, Qiangfei ; Chin, Matthew L ; Dubey, Madan ; Han, Shu-jen</creator><creatorcontrib>Wang, Han ; Wang, Xiaomu ; Xia, Fengnian ; Wang, Luhao ; Jiang, Hao ; Xia, Qiangfei ; Chin, Matthew L ; Dubey, Madan ; Han, Shu-jen</creatorcontrib><description>Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl5029717</identifier><identifier>PMID: 25347787</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Current density ; Devices ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Materials science ; Molecular electronics, nanoelectronics ; Phosphorus ; Physics ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Thin films ; Transistors</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6424-6429</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</citedby><cites>FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl5029717$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl5029717$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29081001$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25347787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Xiaomu</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Wang, Luhao</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Xia, Qiangfei</creatorcontrib><creatorcontrib>Chin, Matthew L</creatorcontrib><creatorcontrib>Dubey, Madan</creatorcontrib><creatorcontrib>Han, Shu-jen</creatorcontrib><title>Black Phosphorus Radio-Frequency Transistors</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Current density</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Phosphorus</subject><subject>Physics</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlYP_gHpRVBwdfK1SY5arAoFRep5SdMs3brd1Ez30H9vpLW9CJ7mHXh4Z3gIOadwS4HRu6aWwIyi6oB0qeSQ5caww13WokNOEOcAYLiEY9JhkgultOqSm4faus_-2yzgchZii_13O61CNoz-q_WNW_fH0TZY4SpEPCVHpa3Rn21nj3wMH8eD52z0-vQyuB9lliu9yozWudA5y4UFK9R0ooX2wgNjDqAsraNKO1X6lNPOpdbghCmlVFNnLJ3wHrna9C5jSF_gqlhU6Hxd28aHFguqcgZScGP-R3MmDE_viIReb1AXA2L0ZbGM1cLGdUGh-PFY7Dwm9mJb204Wfrojf8Ul4HILWHS2LpMkV-GeM6ApAN1z1mExD21skrg_Dn4D4O6DsQ</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Wang, Han</creator><creator>Wang, Xiaomu</creator><creator>Xia, Fengnian</creator><creator>Wang, Luhao</creator><creator>Jiang, Hao</creator><creator>Xia, Qiangfei</creator><creator>Chin, Matthew L</creator><creator>Dubey, Madan</creator><creator>Han, Shu-jen</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Black Phosphorus Radio-Frequency Transistors</title><author>Wang, Han ; Wang, Xiaomu ; Xia, Fengnian ; Wang, Luhao ; Jiang, Hao ; Xia, Qiangfei ; Chin, Matthew L ; Dubey, Madan ; Han, Shu-jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Current density</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Phosphorus</topic><topic>Physics</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Xiaomu</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Wang, Luhao</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Xia, Qiangfei</creatorcontrib><creatorcontrib>Chin, Matthew L</creatorcontrib><creatorcontrib>Dubey, Madan</creatorcontrib><creatorcontrib>Han, Shu-jen</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Han</au><au>Wang, Xiaomu</au><au>Xia, Fengnian</au><au>Wang, Luhao</au><au>Jiang, Hao</au><au>Xia, Qiangfei</au><au>Chin, Matthew L</au><au>Dubey, Madan</au><au>Han, Shu-jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black Phosphorus Radio-Frequency Transistors</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6424</spage><epage>6429</epage><pages>6424-6429</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25347787</pmid><doi>10.1021/nl5029717</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-11, Vol.14 (11), p.6424-6429 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762054399 |
source | ACS Publications |
subjects | Applied sciences Cross-disciplinary physics: materials science rheology Current density Devices Electronics Exact sciences and technology Fullerenes and related materials diamonds, graphite Graphene Materials science Molecular electronics, nanoelectronics Phosphorus Physics Semiconductor devices Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials Thin films Transistors |
title | Black Phosphorus Radio-Frequency Transistors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20Phosphorus%20Radio-Frequency%20Transistors&rft.jtitle=Nano%20letters&rft.au=Wang,%20Han&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6424&rft.epage=6429&rft.pages=6424-6429&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl5029717&rft_dat=%3Cproquest_cross%3E1762054399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1624936484&rft_id=info:pmid/25347787&rfr_iscdi=true |