Black Phosphorus Radio-Frequency Transistors

Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-11, Vol.14 (11), p.6424-6429
Hauptverfasser: Wang, Han, Wang, Xiaomu, Xia, Fengnian, Wang, Luhao, Jiang, Hao, Xia, Qiangfei, Chin, Matthew L, Dubey, Madan, Han, Shu-jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6429
container_issue 11
container_start_page 6424
container_title Nano letters
container_volume 14
creator Wang, Han
Wang, Xiaomu
Xia, Fengnian
Wang, Luhao
Jiang, Hao
Xia, Qiangfei
Chin, Matthew L
Dubey, Madan
Han, Shu-jen
description Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.
doi_str_mv 10.1021/nl5029717
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762054399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762054399</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMotlYP_gHpRVBwdfK1SY5arAoFRep5SdMs3brd1Ez30H9vpLW9CJ7mHXh4Z3gIOadwS4HRu6aWwIyi6oB0qeSQ5caww13WokNOEOcAYLiEY9JhkgultOqSm4faus_-2yzgchZii_13O61CNoz-q_WNW_fH0TZY4SpEPCVHpa3Rn21nj3wMH8eD52z0-vQyuB9lliu9yozWudA5y4UFK9R0ooX2wgNjDqAsraNKO1X6lNPOpdbghCmlVFNnLJ3wHrna9C5jSF_gqlhU6Hxd28aHFguqcgZScGP-R3MmDE_viIReb1AXA2L0ZbGM1cLGdUGh-PFY7Dwm9mJb204Wfrojf8Ul4HILWHS2LpMkV-GeM6ApAN1z1mExD21skrg_Dn4D4O6DsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1624936484</pqid></control><display><type>article</type><title>Black Phosphorus Radio-Frequency Transistors</title><source>ACS Publications</source><creator>Wang, Han ; Wang, Xiaomu ; Xia, Fengnian ; Wang, Luhao ; Jiang, Hao ; Xia, Qiangfei ; Chin, Matthew L ; Dubey, Madan ; Han, Shu-jen</creator><creatorcontrib>Wang, Han ; Wang, Xiaomu ; Xia, Fengnian ; Wang, Luhao ; Jiang, Hao ; Xia, Qiangfei ; Chin, Matthew L ; Dubey, Madan ; Han, Shu-jen</creatorcontrib><description>Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl5029717</identifier><identifier>PMID: 25347787</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Cross-disciplinary physics: materials science; rheology ; Current density ; Devices ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Materials science ; Molecular electronics, nanoelectronics ; Phosphorus ; Physics ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Thin films ; Transistors</subject><ispartof>Nano letters, 2014-11, Vol.14 (11), p.6424-6429</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</citedby><cites>FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl5029717$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl5029717$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=29081001$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25347787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Xiaomu</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Wang, Luhao</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Xia, Qiangfei</creatorcontrib><creatorcontrib>Chin, Matthew L</creatorcontrib><creatorcontrib>Dubey, Madan</creatorcontrib><creatorcontrib>Han, Shu-jen</creatorcontrib><title>Black Phosphorus Radio-Frequency Transistors</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.</description><subject>Applied sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Current density</subject><subject>Devices</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Phosphorus</subject><subject>Physics</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Thin films</subject><subject>Transistors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMotlYP_gHpRVBwdfK1SY5arAoFRep5SdMs3brd1Ez30H9vpLW9CJ7mHXh4Z3gIOadwS4HRu6aWwIyi6oB0qeSQ5caww13WokNOEOcAYLiEY9JhkgultOqSm4faus_-2yzgchZii_13O61CNoz-q_WNW_fH0TZY4SpEPCVHpa3Rn21nj3wMH8eD52z0-vQyuB9lliu9yozWudA5y4UFK9R0ooX2wgNjDqAsraNKO1X6lNPOpdbghCmlVFNnLJ3wHrna9C5jSF_gqlhU6Hxd28aHFguqcgZScGP-R3MmDE_viIReb1AXA2L0ZbGM1cLGdUGh-PFY7Dwm9mJb204Wfrojf8Ul4HILWHS2LpMkV-GeM6ApAN1z1mExD21skrg_Dn4D4O6DsQ</recordid><startdate>20141112</startdate><enddate>20141112</enddate><creator>Wang, Han</creator><creator>Wang, Xiaomu</creator><creator>Xia, Fengnian</creator><creator>Wang, Luhao</creator><creator>Jiang, Hao</creator><creator>Xia, Qiangfei</creator><creator>Chin, Matthew L</creator><creator>Dubey, Madan</creator><creator>Han, Shu-jen</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141112</creationdate><title>Black Phosphorus Radio-Frequency Transistors</title><author>Wang, Han ; Wang, Xiaomu ; Xia, Fengnian ; Wang, Luhao ; Jiang, Hao ; Xia, Qiangfei ; Chin, Matthew L ; Dubey, Madan ; Han, Shu-jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-9886486264a0a47db848e4e022c00ffac178c7fe0ff00f35880c49f557dc9a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Current density</topic><topic>Devices</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Phosphorus</topic><topic>Physics</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Thin films</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Wang, Xiaomu</creatorcontrib><creatorcontrib>Xia, Fengnian</creatorcontrib><creatorcontrib>Wang, Luhao</creatorcontrib><creatorcontrib>Jiang, Hao</creatorcontrib><creatorcontrib>Xia, Qiangfei</creatorcontrib><creatorcontrib>Chin, Matthew L</creatorcontrib><creatorcontrib>Dubey, Madan</creatorcontrib><creatorcontrib>Han, Shu-jen</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Han</au><au>Wang, Xiaomu</au><au>Xia, Fengnian</au><au>Wang, Luhao</au><au>Jiang, Hao</au><au>Xia, Qiangfei</au><au>Chin, Matthew L</au><au>Dubey, Madan</au><au>Han, Shu-jen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black Phosphorus Radio-Frequency Transistors</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-11-12</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>6424</spage><epage>6429</epage><pages>6424-6429</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Few-layer and thin film forms of layered black phosphorus (BP) have recently emerged as a promising material for applications in high performance nanoelectronics and infrared optoelectronics. Layered BP thin films offer a moderate bandgap of around 0.3 eV and high carrier mobility, which lead to transistors with decent on–off ratios and high on-state current densities. Here, we demonstrate the gigahertz frequency operation of BP field-effect transistors for the first time. The BP transistors demonstrated here show respectable current saturation with an on–off ratio that exceeds 2 × 103. We achieved a current density in excess of 270 mA/mm and DC transconductance above 180 mS/mm for hole conduction. Using standard high frequency characterization techniques, we measured a short-circuit current-gain cutoff frequency f T of 12 GHz and a maximum oscillation frequency f max of 20 GHz in 300 nm channel length devices. BP devices may offer advantages over graphene transistors for high frequency electronics in terms of voltage and power gain due to the good current saturation properties arising from their finite bandgap, thus can be considered as a promising candidate for the future high performance thin film electronics technology for operation in the multi-GHz frequency range and beyond.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>25347787</pmid><doi>10.1021/nl5029717</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-11, Vol.14 (11), p.6424-6429
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762054399
source ACS Publications
subjects Applied sciences
Cross-disciplinary physics: materials science
rheology
Current density
Devices
Electronics
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Materials science
Molecular electronics, nanoelectronics
Phosphorus
Physics
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
Thin films
Transistors
title Black Phosphorus Radio-Frequency Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20Phosphorus%20Radio-Frequency%20Transistors&rft.jtitle=Nano%20letters&rft.au=Wang,%20Han&rft.date=2014-11-12&rft.volume=14&rft.issue=11&rft.spage=6424&rft.epage=6429&rft.pages=6424-6429&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl5029717&rft_dat=%3Cproquest_cross%3E1762054399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1624936484&rft_id=info:pmid/25347787&rfr_iscdi=true