Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor

A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-07, Vol.7 (7), p.6047-6055
Hauptverfasser: Lee, Jung-Soo, Kim, Sun-I, Yoon, Jong-Chul, Jang, Ji-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6055
container_issue 7
container_start_page 6047
container_title ACS nano
container_volume 7
creator Lee, Jung-Soo
Kim, Sun-I
Yoon, Jong-Chul
Jang, Ji-Hyun
description A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m2/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas.
doi_str_mv 10.1021/nn401850z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1412155778</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-a63c91dfdac1254e6fd413021f551fe3acd05598afa807c42ab5cdc5d4df45233</originalsourceid><addsrcrecordid>eNqF0MtKw0AUBuBBFFurC19AshF0EZ1rMl1Kq1VodeEFd-F0LjQlycSZZKFP70hrV4KrOQwfP-f8CJ0SfEUwJddNwzGRAn_toSEZsyzFMnvf382CDNBRCGuMRS7z7BANKMslpUwO0WKyMnWpoEreoHU-mZrWhbIrXZM4myxMcPHX9SGZeWhXpjHJIzRuCVUVEhv9c98ar6AFVXbOH6MDC1UwJ9t3hF7vbl8m9-n8afYwuZmnwAnvUsiYGhNtNShCBTeZ1ZyweIkVgljDQGksxFiCBYlzxSkshdJKaK4tF5SxEbrY5LbeffQmdEVdBmWqChoTly1InlEsmIz2X8oJJULkuYz0ckOVdyF4Y4vWlzX4z4Lg4qfoYld0tGfb2H5ZG72Tv81GcL4BoEKxdr1vYiF_BH0D5ouE5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1412155778</pqid></control><display><type>article</type><title>Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lee, Jung-Soo ; Kim, Sun-I ; Yoon, Jong-Chul ; Jang, Ji-Hyun</creator><creatorcontrib>Lee, Jung-Soo ; Kim, Sun-I ; Yoon, Jong-Chul ; Jang, Ji-Hyun</creatorcontrib><description>A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m2/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn401850z</identifier><identifier>PMID: 23782238</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Borides ; Capacitors ; Chemical vapor deposition ; Crystallization - methods ; Electric Capacitance ; Electric Power Supplies ; Electrodes ; Electronics - instrumentation ; Gases - chemistry ; Graphene ; Graphite - chemistry ; Hydrogen - chemistry ; Macromolecular Substances - chemistry ; Magnesium compounds ; Materials Testing ; Molecular Conformation ; Nanopores - ultrastructure ; Nanospheres - chemistry ; Nanospheres - ultrastructure ; Nanostructure ; Particle Size ; Polystyrene resins ; Supercapacitors ; Surface Properties</subject><ispartof>ACS nano, 2013-07, Vol.7 (7), p.6047-6055</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-a63c91dfdac1254e6fd413021f551fe3acd05598afa807c42ab5cdc5d4df45233</citedby><cites>FETCH-LOGICAL-a414t-a63c91dfdac1254e6fd413021f551fe3acd05598afa807c42ab5cdc5d4df45233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn401850z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn401850z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23782238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jung-Soo</creatorcontrib><creatorcontrib>Kim, Sun-I</creatorcontrib><creatorcontrib>Yoon, Jong-Chul</creatorcontrib><creatorcontrib>Jang, Ji-Hyun</creatorcontrib><title>Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m2/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas.</description><subject>Borides</subject><subject>Capacitors</subject><subject>Chemical vapor deposition</subject><subject>Crystallization - methods</subject><subject>Electric Capacitance</subject><subject>Electric Power Supplies</subject><subject>Electrodes</subject><subject>Electronics - instrumentation</subject><subject>Gases - chemistry</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Macromolecular Substances - chemistry</subject><subject>Magnesium compounds</subject><subject>Materials Testing</subject><subject>Molecular Conformation</subject><subject>Nanopores - ultrastructure</subject><subject>Nanospheres - chemistry</subject><subject>Nanospheres - ultrastructure</subject><subject>Nanostructure</subject><subject>Particle Size</subject><subject>Polystyrene resins</subject><subject>Supercapacitors</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKw0AUBuBBFFurC19AshF0EZ1rMl1Kq1VodeEFd-F0LjQlycSZZKFP70hrV4KrOQwfP-f8CJ0SfEUwJddNwzGRAn_toSEZsyzFMnvf382CDNBRCGuMRS7z7BANKMslpUwO0WKyMnWpoEreoHU-mZrWhbIrXZM4myxMcPHX9SGZeWhXpjHJIzRuCVUVEhv9c98ar6AFVXbOH6MDC1UwJ9t3hF7vbl8m9-n8afYwuZmnwAnvUsiYGhNtNShCBTeZ1ZyweIkVgljDQGksxFiCBYlzxSkshdJKaK4tF5SxEbrY5LbeffQmdEVdBmWqChoTly1InlEsmIz2X8oJJULkuYz0ckOVdyF4Y4vWlzX4z4Lg4qfoYld0tGfb2H5ZG72Tv81GcL4BoEKxdr1vYiF_BH0D5ouE5w</recordid><startdate>20130723</startdate><enddate>20130723</enddate><creator>Lee, Jung-Soo</creator><creator>Kim, Sun-I</creator><creator>Yoon, Jong-Chul</creator><creator>Jang, Ji-Hyun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130723</creationdate><title>Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor</title><author>Lee, Jung-Soo ; Kim, Sun-I ; Yoon, Jong-Chul ; Jang, Ji-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-a63c91dfdac1254e6fd413021f551fe3acd05598afa807c42ab5cdc5d4df45233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Borides</topic><topic>Capacitors</topic><topic>Chemical vapor deposition</topic><topic>Crystallization - methods</topic><topic>Electric Capacitance</topic><topic>Electric Power Supplies</topic><topic>Electrodes</topic><topic>Electronics - instrumentation</topic><topic>Gases - chemistry</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Macromolecular Substances - chemistry</topic><topic>Magnesium compounds</topic><topic>Materials Testing</topic><topic>Molecular Conformation</topic><topic>Nanopores - ultrastructure</topic><topic>Nanospheres - chemistry</topic><topic>Nanospheres - ultrastructure</topic><topic>Nanostructure</topic><topic>Particle Size</topic><topic>Polystyrene resins</topic><topic>Supercapacitors</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jung-Soo</creatorcontrib><creatorcontrib>Kim, Sun-I</creatorcontrib><creatorcontrib>Yoon, Jong-Chul</creatorcontrib><creatorcontrib>Jang, Ji-Hyun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jung-Soo</au><au>Kim, Sun-I</au><au>Yoon, Jong-Chul</au><au>Jang, Ji-Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-07-23</date><risdate>2013</risdate><volume>7</volume><issue>7</issue><spage>6047</spage><epage>6055</epage><pages>6047-6055</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m2/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23782238</pmid><doi>10.1021/nn401850z</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-07, Vol.7 (7), p.6047-6055
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762053852
source MEDLINE; ACS Publications
subjects Borides
Capacitors
Chemical vapor deposition
Crystallization - methods
Electric Capacitance
Electric Power Supplies
Electrodes
Electronics - instrumentation
Gases - chemistry
Graphene
Graphite - chemistry
Hydrogen - chemistry
Macromolecular Substances - chemistry
Magnesium compounds
Materials Testing
Molecular Conformation
Nanopores - ultrastructure
Nanospheres - chemistry
Nanospheres - ultrastructure
Nanostructure
Particle Size
Polystyrene resins
Supercapacitors
Surface Properties
title Chemical Vapor Deposition of Mesoporous Graphene Nanoballs for Supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A26%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Vapor%20Deposition%20of%20Mesoporous%20Graphene%20Nanoballs%20for%20Supercapacitor&rft.jtitle=ACS%20nano&rft.au=Lee,%20Jung-Soo&rft.date=2013-07-23&rft.volume=7&rft.issue=7&rft.spage=6047&rft.epage=6055&rft.pages=6047-6055&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn401850z&rft_dat=%3Cproquest_cross%3E1412155778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1412155778&rft_id=info:pmid/23782238&rfr_iscdi=true