Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys

Here we provide the first report on several compositions of ternary Sn–Ge–Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-05, Vol.8 (5), p.4415-4429
Hauptverfasser: Farbod, Behdokht, Cui, Kai, Kalisvaart, W. Peter, Kupsta, Martin, Zahiri, Beniamin, Kohandehghan, Alireza, Lotfabad, Elmira Memarzadeh, Li, Zhi, Luber, Erik J, Mitlin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4429
container_issue 5
container_start_page 4415
container_title ACS nano
container_volume 8
creator Farbod, Behdokht
Cui, Kai
Kalisvaart, W. Peter
Kupsta, Martin
Zahiri, Beniamin
Kohandehghan, Alireza
Lotfabad, Elmira Memarzadeh
Li, Zhi
Luber, Erik J
Mitlin, David
description Here we provide the first report on several compositions of ternary Sn–Ge–Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg–1 (at 85 mAg–1) and 662 mAhg–1 after 50 charge–discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg–1 at a current density of 8500 mAg–1 (∼10C). A survey of published literature indicates that 833 mAhg–1 is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg–1 represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 is a composite of 10–15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.
doi_str_mv 10.1021/nn4063598
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1529841115</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-70ad9fbd276f5c3aec219ee367a9f1ec8413959d875d76a704b5bbec58e449f03</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRbK0ufAHJRtBFdCbzv0yLVqXgwgruwiQzgZRkps4ki-58B9_QJ3GktSvB1f249_BdOACcI3iDYIZurSWQYSrFARgjiVkKBXs73GeKRuAkhBWElAvOjsEoIxzTjPMxeMqt0yYktfPJi9PN0CWPziZT1ffGN_EwVcHoJK6Wjf36-Jwb3ykbsZhz2zeds5skb1u3CafgqFZtMGe7OQGv93fL2UO6eJ4_zvJFqjARfcqh0rIudcZZTSusTJUhaQxmXMkamUoQhCWVWnCqOVMckpKWpamoMITIGuIJuNr2rr17H0zoi64JlWlbZY0bQoE4yyDFhIv_UZrJ-A8hGtHrLVp5F4I3dbH2Taf8pkCw-LFc7C1H9mJXO5Sd0XvyV2sELreAqkKxcoO3UcgfRd_daoQN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1529841115</pqid></control><display><type>article</type><title>Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys</title><source>American Chemical Society Journals</source><creator>Farbod, Behdokht ; Cui, Kai ; Kalisvaart, W. Peter ; Kupsta, Martin ; Zahiri, Beniamin ; Kohandehghan, Alireza ; Lotfabad, Elmira Memarzadeh ; Li, Zhi ; Luber, Erik J ; Mitlin, David</creator><creatorcontrib>Farbod, Behdokht ; Cui, Kai ; Kalisvaart, W. Peter ; Kupsta, Martin ; Zahiri, Beniamin ; Kohandehghan, Alireza ; Lotfabad, Elmira Memarzadeh ; Li, Zhi ; Luber, Erik J ; Mitlin, David</creatorcontrib><description>Here we provide the first report on several compositions of ternary Sn–Ge–Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg–1 (at 85 mAg–1) and 662 mAhg–1 after 50 charge–discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg–1 at a current density of 8500 mAg–1 (∼10C). A survey of published literature indicates that 833 mAhg–1 is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg–1 represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 is a composite of 10–15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn4063598</identifier><identifier>PMID: 24735277</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Accumulators ; Alloys ; Anodes ; Collectors ; Germanium ; Rechargeable batteries ; Sodium ; Tin</subject><ispartof>ACS nano, 2014-05, Vol.8 (5), p.4415-4429</ispartof><rights>Copyright © 2014 U.K. or Canada</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-70ad9fbd276f5c3aec219ee367a9f1ec8413959d875d76a704b5bbec58e449f03</citedby><cites>FETCH-LOGICAL-a348t-70ad9fbd276f5c3aec219ee367a9f1ec8413959d875d76a704b5bbec58e449f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn4063598$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn4063598$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24735277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Farbod, Behdokht</creatorcontrib><creatorcontrib>Cui, Kai</creatorcontrib><creatorcontrib>Kalisvaart, W. Peter</creatorcontrib><creatorcontrib>Kupsta, Martin</creatorcontrib><creatorcontrib>Zahiri, Beniamin</creatorcontrib><creatorcontrib>Kohandehghan, Alireza</creatorcontrib><creatorcontrib>Lotfabad, Elmira Memarzadeh</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Luber, Erik J</creatorcontrib><creatorcontrib>Mitlin, David</creatorcontrib><title>Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Here we provide the first report on several compositions of ternary Sn–Ge–Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg–1 (at 85 mAg–1) and 662 mAhg–1 after 50 charge–discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg–1 at a current density of 8500 mAg–1 (∼10C). A survey of published literature indicates that 833 mAhg–1 is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg–1 represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 is a composite of 10–15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.</description><subject>Accumulators</subject><subject>Alloys</subject><subject>Anodes</subject><subject>Collectors</subject><subject>Germanium</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Tin</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AURgdRbK0ufAHJRtBFdCbzv0yLVqXgwgruwiQzgZRkps4ki-58B9_QJ3GktSvB1f249_BdOACcI3iDYIZurSWQYSrFARgjiVkKBXs73GeKRuAkhBWElAvOjsEoIxzTjPMxeMqt0yYktfPJi9PN0CWPziZT1ffGN_EwVcHoJK6Wjf36-Jwb3ykbsZhz2zeds5skb1u3CafgqFZtMGe7OQGv93fL2UO6eJ4_zvJFqjARfcqh0rIudcZZTSusTJUhaQxmXMkamUoQhCWVWnCqOVMckpKWpamoMITIGuIJuNr2rr17H0zoi64JlWlbZY0bQoE4yyDFhIv_UZrJ-A8hGtHrLVp5F4I3dbH2Taf8pkCw-LFc7C1H9mJXO5Sd0XvyV2sELreAqkKxcoO3UcgfRd_daoQN</recordid><startdate>20140527</startdate><enddate>20140527</enddate><creator>Farbod, Behdokht</creator><creator>Cui, Kai</creator><creator>Kalisvaart, W. Peter</creator><creator>Kupsta, Martin</creator><creator>Zahiri, Beniamin</creator><creator>Kohandehghan, Alireza</creator><creator>Lotfabad, Elmira Memarzadeh</creator><creator>Li, Zhi</creator><creator>Luber, Erik J</creator><creator>Mitlin, David</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140527</creationdate><title>Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys</title><author>Farbod, Behdokht ; Cui, Kai ; Kalisvaart, W. Peter ; Kupsta, Martin ; Zahiri, Beniamin ; Kohandehghan, Alireza ; Lotfabad, Elmira Memarzadeh ; Li, Zhi ; Luber, Erik J ; Mitlin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-70ad9fbd276f5c3aec219ee367a9f1ec8413959d875d76a704b5bbec58e449f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accumulators</topic><topic>Alloys</topic><topic>Anodes</topic><topic>Collectors</topic><topic>Germanium</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farbod, Behdokht</creatorcontrib><creatorcontrib>Cui, Kai</creatorcontrib><creatorcontrib>Kalisvaart, W. Peter</creatorcontrib><creatorcontrib>Kupsta, Martin</creatorcontrib><creatorcontrib>Zahiri, Beniamin</creatorcontrib><creatorcontrib>Kohandehghan, Alireza</creatorcontrib><creatorcontrib>Lotfabad, Elmira Memarzadeh</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Luber, Erik J</creatorcontrib><creatorcontrib>Mitlin, David</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farbod, Behdokht</au><au>Cui, Kai</au><au>Kalisvaart, W. Peter</au><au>Kupsta, Martin</au><au>Zahiri, Beniamin</au><au>Kohandehghan, Alireza</au><au>Lotfabad, Elmira Memarzadeh</au><au>Li, Zhi</au><au>Luber, Erik J</au><au>Mitlin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-05-27</date><risdate>2014</risdate><volume>8</volume><issue>5</issue><spage>4415</spage><epage>4429</epage><pages>4415-4429</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Here we provide the first report on several compositions of ternary Sn–Ge–Sb thin film alloys for application as sodium ion battery (aka NIB, NaB or SIB) anodes, employing Sn50Ge50, Sb50Ge50, and pure Sn, Ge, Sb as baselines. Sn33Ge33Sb33, Sn50Ge25Sb25, Sn60Ge20Sb20, and Sn50Ge50 all demonstrate promising electrochemical behavior, with Sn50Ge25Sb25 being the best overall. This alloy has an initial reversible specific capacity of 833 mAhg–1 (at 85 mAg–1) and 662 mAhg–1 after 50 charge–discharge cycles. Sn50Ge25Sb25 also shows excellent rate capability, displaying a stable capacity of 381 mAhg–1 at a current density of 8500 mAg–1 (∼10C). A survey of published literature indicates that 833 mAhg–1 is among the highest reversible capacities reported for a Sn-based NIB anode, while 381 mAhg–1 represents the optimum fast charge value. HRTEM shows that Sn50Ge25Sb25 is a composite of 10–15 nm Sn and Sn-alloyed Ge nanocrystallites that are densely dispersed within an amorphous matrix. Comparing the microstructures of alloys where the capacity significantly exceeds the rule of mixtures prediction to those where it does not leads us to hypothesize that this new phenomenon originates from the Ge(Sn) that is able to sodiate beyond the 1:1 Na:Ge ratio reported for the pure element. Combined TOF-SIMS, EELS TEM, and FIB analysis demonstrates substantial Na segregation within the film near the current collector interface that is present as early as the second discharge, followed by cycling-induced delamination from the current collector.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24735277</pmid><doi>10.1021/nn4063598</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-05, Vol.8 (5), p.4415-4429
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762053478
source American Chemical Society Journals
subjects Accumulators
Alloys
Anodes
Collectors
Germanium
Rechargeable batteries
Sodium
Tin
title Anodes for Sodium Ion Batteries Based on Tin–Germanium–Antimony Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anodes%20for%20Sodium%20Ion%20Batteries%20Based%20on%20Tin%E2%80%93Germanium%E2%80%93Antimony%20Alloys&rft.jtitle=ACS%20nano&rft.au=Farbod,%20Behdokht&rft.date=2014-05-27&rft.volume=8&rft.issue=5&rft.spage=4415&rft.epage=4429&rft.pages=4415-4429&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn4063598&rft_dat=%3Cproquest_cross%3E1529841115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1529841115&rft_id=info:pmid/24735277&rfr_iscdi=true