OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps

We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano Letters 2012-09, Vol.12 (9), p.4734-4737
Hauptverfasser: Zhou, Xiaozhu, Shade, Chad M, Schmucker, Abrin L, Brown, Keith A, He, Shu, Boey, Freddy, Ma, Jan, Zhang, Hua, Mirkin, Chad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4737
container_issue 9
container_start_page 4734
container_title Nano Letters
container_volume 12
creator Zhou, Xiaozhu
Shade, Chad M
Schmucker, Abrin L
Brown, Keith A
He, Shu
Boey, Freddy
Ma, Jan
Zhang, Hua
Mirkin, Chad A
description We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.
doi_str_mv 10.1021/nl302171z
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</originalsourceid><addsrcrecordid>eNpt0E1v1DAQBmALgegHPfQPIAsJqRxSxnHsZI-lokulVVu1VD1GjjNmUxI7eBKh8usx2u32wmnm8Oid0cvYsYBTAbn47HuZRin-vGL7QknI9GKRv97tVbHHDogeAWAhFbxle3leVYsiF_vs4vphlX0xhC2_Mj4Mhn4SdyHym4ijiZ3_wZfRjGv0yG-7pgme-O9uWvO7uckEcD_wpRnpHXvjTE94tJ2H7P7i6_fzb9nqenl5frbKTAFqyrQTolKNEarBXLsKKmFspZ3VohVNoZVs0TinS3SACqG0CguJJbSqlC2APGQfNrmBpq4m201o1zZ4j3aqRYoDLRM62aAxhl8z0lQPHVnse-MxzFSLUuegZKou0U8bamMgiujqMXaDiU8prP7Xbb3rNtn329i5GbDdyecyE_i4BYas6V003nb04rRU6T94ccZS_Rjm6FNl_zn4FwkNikc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053102</pqid></control><display><type>article</type><title>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhou, Xiaozhu ; Shade, Chad M ; Schmucker, Abrin L ; Brown, Keith A ; He, Shu ; Boey, Freddy ; Ma, Jan ; Zhang, Hua ; Mirkin, Chad A</creator><creatorcontrib>Zhou, Xiaozhu ; Shade, Chad M ; Schmucker, Abrin L ; Brown, Keith A ; He, Shu ; Boey, Freddy ; Ma, Jan ; Zhang, Hua ; Mirkin, Chad A ; Energy Frontier Research Centers (EFRC) ; Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><description>We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl302171z</identifier><identifier>PMID: 22889421</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Etching ; Etching (metallography) ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Gold ; Graphene ; Graphite - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Molecular Conformation ; Molecular Imprinting - methods ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanowires ; Nickel ; Particle Size ; Physics ; Quantum wires ; Ribbons ; Segments ; Specific materials ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano Letters, 2012-09, Vol.12 (9), p.4734-4737</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</citedby><cites>FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl302171z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl302171z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26351060$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22889421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1081063$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Xiaozhu</creatorcontrib><creatorcontrib>Shade, Chad M</creatorcontrib><creatorcontrib>Schmucker, Abrin L</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>He, Shu</creatorcontrib><creatorcontrib>Boey, Freddy</creatorcontrib><creatorcontrib>Ma, Jan</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><title>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</title><title>Nano Letters</title><addtitle>Nano Lett</addtitle><description>We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.</description><subject>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Etching</subject><subject>Etching (metallography)</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Gold</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Molecular Conformation</subject><subject>Molecular Imprinting - methods</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Ribbons</subject><subject>Segments</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1v1DAQBmALgegHPfQPIAsJqRxSxnHsZI-lokulVVu1VD1GjjNmUxI7eBKh8usx2u32wmnm8Oid0cvYsYBTAbn47HuZRin-vGL7QknI9GKRv97tVbHHDogeAWAhFbxle3leVYsiF_vs4vphlX0xhC2_Mj4Mhn4SdyHym4ijiZ3_wZfRjGv0yG-7pgme-O9uWvO7uckEcD_wpRnpHXvjTE94tJ2H7P7i6_fzb9nqenl5frbKTAFqyrQTolKNEarBXLsKKmFspZ3VohVNoZVs0TinS3SACqG0CguJJbSqlC2APGQfNrmBpq4m201o1zZ4j3aqRYoDLRM62aAxhl8z0lQPHVnse-MxzFSLUuegZKou0U8bamMgiujqMXaDiU8prP7Xbb3rNtn329i5GbDdyecyE_i4BYas6V003nb04rRU6T94ccZS_Rjm6FNl_zn4FwkNikc</recordid><startdate>20120912</startdate><enddate>20120912</enddate><creator>Zhou, Xiaozhu</creator><creator>Shade, Chad M</creator><creator>Schmucker, Abrin L</creator><creator>Brown, Keith A</creator><creator>He, Shu</creator><creator>Boey, Freddy</creator><creator>Ma, Jan</creator><creator>Zhang, Hua</creator><creator>Mirkin, Chad A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120912</creationdate><title>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</title><author>Zhou, Xiaozhu ; Shade, Chad M ; Schmucker, Abrin L ; Brown, Keith A ; He, Shu ; Boey, Freddy ; Ma, Jan ; Zhang, Hua ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Etching</topic><topic>Etching (metallography)</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Gold</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Molecular Conformation</topic><topic>Molecular Imprinting - methods</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Ribbons</topic><topic>Segments</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaozhu</creatorcontrib><creatorcontrib>Shade, Chad M</creatorcontrib><creatorcontrib>Schmucker, Abrin L</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>He, Shu</creatorcontrib><creatorcontrib>Boey, Freddy</creatorcontrib><creatorcontrib>Ma, Jan</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaozhu</au><au>Shade, Chad M</au><au>Schmucker, Abrin L</au><au>Brown, Keith A</au><au>He, Shu</au><au>Boey, Freddy</au><au>Ma, Jan</au><au>Zhang, Hua</au><au>Mirkin, Chad A</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Bio-Inspired Energy Science (CBES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</atitle><jtitle>Nano Letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-09-12</date><risdate>2012</risdate><volume>12</volume><issue>9</issue><spage>4734</spage><epage>4737</epage><pages>4734-4737</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22889421</pmid><doi>10.1021/nl302171z</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano Letters, 2012-09, Vol.12 (9), p.4734-4737
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762053102
source MEDLINE; ACS Publications
subjects catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Crystallization - methods
Etching
Etching (metallography)
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Gold
Graphene
Graphite - chemistry
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Macromolecular Substances - chemistry
Materials science
Materials Testing
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
Molecular Conformation
Molecular Imprinting - methods
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Nanowires
Nickel
Particle Size
Physics
Quantum wires
Ribbons
Segments
Specific materials
Surface Properties
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OWL-Based%20Nanomasks%20for%20Preparing%20Graphene%20Ribbons%20with%20Sub-10%20nm%20Gaps&rft.jtitle=Nano%20Letters&rft.au=Zhou,%20Xiaozhu&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-09-12&rft.volume=12&rft.issue=9&rft.spage=4734&rft.epage=4737&rft.pages=4734-4737&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl302171z&rft_dat=%3Cproquest_osti_%3E1762053102%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762053102&rft_id=info:pmid/22889421&rfr_iscdi=true