OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps
We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with...
Gespeichert in:
Veröffentlicht in: | Nano Letters 2012-09, Vol.12 (9), p.4734-4737 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4737 |
---|---|
container_issue | 9 |
container_start_page | 4734 |
container_title | Nano Letters |
container_volume | 12 |
creator | Zhou, Xiaozhu Shade, Chad M Schmucker, Abrin L Brown, Keith A He, Shu Boey, Freddy Ma, Jan Zhang, Hua Mirkin, Chad A |
description | We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps. |
doi_str_mv | 10.1021/nl302171z |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762053102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762053102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</originalsourceid><addsrcrecordid>eNpt0E1v1DAQBmALgegHPfQPIAsJqRxSxnHsZI-lokulVVu1VD1GjjNmUxI7eBKh8usx2u32wmnm8Oid0cvYsYBTAbn47HuZRin-vGL7QknI9GKRv97tVbHHDogeAWAhFbxle3leVYsiF_vs4vphlX0xhC2_Mj4Mhn4SdyHym4ijiZ3_wZfRjGv0yG-7pgme-O9uWvO7uckEcD_wpRnpHXvjTE94tJ2H7P7i6_fzb9nqenl5frbKTAFqyrQTolKNEarBXLsKKmFspZ3VohVNoZVs0TinS3SACqG0CguJJbSqlC2APGQfNrmBpq4m201o1zZ4j3aqRYoDLRM62aAxhl8z0lQPHVnse-MxzFSLUuegZKou0U8bamMgiujqMXaDiU8prP7Xbb3rNtn329i5GbDdyecyE_i4BYas6V003nb04rRU6T94ccZS_Rjm6FNl_zn4FwkNikc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762053102</pqid></control><display><type>article</type><title>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhou, Xiaozhu ; Shade, Chad M ; Schmucker, Abrin L ; Brown, Keith A ; He, Shu ; Boey, Freddy ; Ma, Jan ; Zhang, Hua ; Mirkin, Chad A</creator><creatorcontrib>Zhou, Xiaozhu ; Shade, Chad M ; Schmucker, Abrin L ; Brown, Keith A ; He, Shu ; Boey, Freddy ; Ma, Jan ; Zhang, Hua ; Mirkin, Chad A ; Energy Frontier Research Centers (EFRC) ; Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><description>We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl302171z</identifier><identifier>PMID: 22889421</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Crystallization - methods ; Etching ; Etching (metallography) ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Gold ; Graphene ; Graphite - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Macromolecular Substances - chemistry ; Materials science ; Materials Testing ; Metal Nanoparticles - chemistry ; Metal Nanoparticles - ultrastructure ; Molecular Conformation ; Molecular Imprinting - methods ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Nanowires ; Nickel ; Particle Size ; Physics ; Quantum wires ; Ribbons ; Segments ; Specific materials ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano Letters, 2012-09, Vol.12 (9), p.4734-4737</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</citedby><cites>FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl302171z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl302171z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26351060$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22889421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1081063$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Xiaozhu</creatorcontrib><creatorcontrib>Shade, Chad M</creatorcontrib><creatorcontrib>Schmucker, Abrin L</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>He, Shu</creatorcontrib><creatorcontrib>Boey, Freddy</creatorcontrib><creatorcontrib>Ma, Jan</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><title>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</title><title>Nano Letters</title><addtitle>Nano Lett</addtitle><description>We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.</description><subject>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Crystallization - methods</subject><subject>Etching</subject><subject>Etching (metallography)</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Gold</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Metal Nanoparticles - ultrastructure</subject><subject>Molecular Conformation</subject><subject>Molecular Imprinting - methods</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Nickel</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Ribbons</subject><subject>Segments</subject><subject>Specific materials</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1v1DAQBmALgegHPfQPIAsJqRxSxnHsZI-lokulVVu1VD1GjjNmUxI7eBKh8usx2u32wmnm8Oid0cvYsYBTAbn47HuZRin-vGL7QknI9GKRv97tVbHHDogeAWAhFbxle3leVYsiF_vs4vphlX0xhC2_Mj4Mhn4SdyHym4ijiZ3_wZfRjGv0yG-7pgme-O9uWvO7uckEcD_wpRnpHXvjTE94tJ2H7P7i6_fzb9nqenl5frbKTAFqyrQTolKNEarBXLsKKmFspZ3VohVNoZVs0TinS3SACqG0CguJJbSqlC2APGQfNrmBpq4m201o1zZ4j3aqRYoDLRM62aAxhl8z0lQPHVnse-MxzFSLUuegZKou0U8bamMgiujqMXaDiU8prP7Xbb3rNtn329i5GbDdyecyE_i4BYas6V003nb04rRU6T94ccZS_Rjm6FNl_zn4FwkNikc</recordid><startdate>20120912</startdate><enddate>20120912</enddate><creator>Zhou, Xiaozhu</creator><creator>Shade, Chad M</creator><creator>Schmucker, Abrin L</creator><creator>Brown, Keith A</creator><creator>He, Shu</creator><creator>Boey, Freddy</creator><creator>Ma, Jan</creator><creator>Zhang, Hua</creator><creator>Mirkin, Chad A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120912</creationdate><title>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</title><author>Zhou, Xiaozhu ; Shade, Chad M ; Schmucker, Abrin L ; Brown, Keith A ; He, Shu ; Boey, Freddy ; Ma, Jan ; Zhang, Hua ; Mirkin, Chad A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-6f1185ba15be26f8081ac86fc61d1b4653deaff67ef0e5e07c5e43e70d573d003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly)</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Crystallization - methods</topic><topic>Etching</topic><topic>Etching (metallography)</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Gold</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Metal Nanoparticles - ultrastructure</topic><topic>Molecular Conformation</topic><topic>Molecular Imprinting - methods</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Nickel</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Ribbons</topic><topic>Segments</topic><topic>Specific materials</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiaozhu</creatorcontrib><creatorcontrib>Shade, Chad M</creatorcontrib><creatorcontrib>Schmucker, Abrin L</creatorcontrib><creatorcontrib>Brown, Keith A</creatorcontrib><creatorcontrib>He, Shu</creatorcontrib><creatorcontrib>Boey, Freddy</creatorcontrib><creatorcontrib>Ma, Jan</creatorcontrib><creatorcontrib>Zhang, Hua</creatorcontrib><creatorcontrib>Mirkin, Chad A</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Bio-Inspired Energy Science (CBES)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiaozhu</au><au>Shade, Chad M</au><au>Schmucker, Abrin L</au><au>Brown, Keith A</au><au>He, Shu</au><au>Boey, Freddy</au><au>Ma, Jan</au><au>Zhang, Hua</au><au>Mirkin, Chad A</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Bio-Inspired Energy Science (CBES)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps</atitle><jtitle>Nano Letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-09-12</date><risdate>2012</risdate><volume>12</volume><issue>9</issue><spage>4734</spage><epage>4737</epage><pages>4734-4737</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report a simple and highly efficient method for creating graphene nanostructures with gaps that can be controlled on the sub-10 nm length scale by utilizing etch masks comprised of electrochemically synthesized multisegmented metal nanowires. This method involves depositing striped nanowires with Au and Ni segments on a graphene-coated substrate, chemically etching the Ni segments, and using a reactive ion etch to remove the graphene not protected by the remaining Au segments. Graphene nanoribbons with gaps as small as 6 nm are fabricated and characterized with atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The high level of control afforded by electrochemical synthesis of the nanowires allows us to specify the dimensions of the nanoribbon, as well as the number, location, and size of nanogaps within the nanoribbon. In addition, the generality of this technique is demonstrated by creating silicon nanostructures with nanogaps.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22889421</pmid><doi>10.1021/nl302171z</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano Letters, 2012-09, Vol.12 (9), p.4734-4737 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762053102 |
source | MEDLINE; ACS Publications |
subjects | catalysis (homogeneous), solar (photovoltaic), bio-inspired, charge transport, mesostructured materials, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly) Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Crystallization - methods Etching Etching (metallography) Exact sciences and technology Fullerenes and related materials diamonds, graphite Gold Graphene Graphite - chemistry Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Macromolecular Substances - chemistry Materials science Materials Testing Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure Molecular Conformation Molecular Imprinting - methods Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanostructure Nanowires Nickel Particle Size Physics Quantum wires Ribbons Segments Specific materials Surface Properties Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | OWL-Based Nanomasks for Preparing Graphene Ribbons with Sub-10 nm Gaps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T00%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OWL-Based%20Nanomasks%20for%20Preparing%20Graphene%20Ribbons%20with%20Sub-10%20nm%20Gaps&rft.jtitle=Nano%20Letters&rft.au=Zhou,%20Xiaozhu&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2012-09-12&rft.volume=12&rft.issue=9&rft.spage=4734&rft.epage=4737&rft.pages=4734-4737&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl302171z&rft_dat=%3Cproquest_osti_%3E1762053102%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762053102&rft_id=info:pmid/22889421&rfr_iscdi=true |