Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks
Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electr...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-09, Vol.7 (9), p.7824-7832 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7832 |
---|---|
container_issue | 9 |
container_start_page | 7824 |
container_title | ACS nano |
container_volume | 7 |
creator | Staude, Isabelle Miroshnichenko, Andrey E Decker, Manuel Fofang, Nche T Liu, Sheng Gonzales, Edward Dominguez, Jason Luk, Ting Shan Neshev, Dragomir N Brener, Igal Kivshar, Yuri |
description | Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source. |
doi_str_mv | 10.1021/nn402736f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762052513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052513</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</originalsourceid><addsrcrecordid>eNqF0T1PHDEQBmALJYILUPAHkJtIodjE3vVniQgkSEeQuCvoVl7v7J3BZxPbmyj_niUHV0VK5fHombeYQeiEks-U1PRLCIzUshHDHppR3YiKKHH_bldzeoA-5PxACJdKin10UDea11roGfJL43xMLqzwV5fAFheD8XhhTSnwt13WKY6rNb4xqwDFWWxCjy_9RNP0uYM8DQQLGbuAF2P32_wCD2FV1njhvLMx4B8mxN7lx3yE3g_GZzh-fQ_R8upyefG9mt9-u744n1eGUVYqNljay4FxJZlSlDMQwgojrR56paUdGOkEGNNJy1UDjNVEdbKhHBTtO9Ycok_b2KcUf46QS7tx2YL3JkAcc0ulqAmvOW3-T5nWlGpC9ETPttSmmHOCoX1KbmPSn5aS9uUM7e4Mkz19jR27DfQ7-bb3CXzcAmNz-xDHNC09_yPoGcrJj6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499119009</pqid></control><display><type>article</type><title>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</title><source>American Chemical Society Journals</source><creator>Staude, Isabelle ; Miroshnichenko, Andrey E ; Decker, Manuel ; Fofang, Nche T ; Liu, Sheng ; Gonzales, Edward ; Dominguez, Jason ; Luk, Ting Shan ; Neshev, Dragomir N ; Brener, Igal ; Kivshar, Yuri</creator><creatorcontrib>Staude, Isabelle ; Miroshnichenko, Andrey E ; Decker, Manuel ; Fofang, Nche T ; Liu, Sheng ; Gonzales, Edward ; Dominguez, Jason ; Luk, Ting Shan ; Neshev, Dragomir N ; Brener, Igal ; Kivshar, Yuri</creatorcontrib><description>Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn402736f</identifier><identifier>PMID: 23952969</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Dipoles ; Interference ; Magnetic resonance ; Mathematical analysis ; Nanostructure ; Resonance scattering ; Scattering ; Silicon ; Spectra</subject><ispartof>ACS nano, 2013-09, Vol.7 (9), p.7824-7832</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</citedby><cites>FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn402736f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn402736f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23952969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Staude, Isabelle</creatorcontrib><creatorcontrib>Miroshnichenko, Andrey E</creatorcontrib><creatorcontrib>Decker, Manuel</creatorcontrib><creatorcontrib>Fofang, Nche T</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Gonzales, Edward</creatorcontrib><creatorcontrib>Dominguez, Jason</creatorcontrib><creatorcontrib>Luk, Ting Shan</creatorcontrib><creatorcontrib>Neshev, Dragomir N</creatorcontrib><creatorcontrib>Brener, Igal</creatorcontrib><creatorcontrib>Kivshar, Yuri</creatorcontrib><title>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.</description><subject>Dipoles</subject><subject>Interference</subject><subject>Magnetic resonance</subject><subject>Mathematical analysis</subject><subject>Nanostructure</subject><subject>Resonance scattering</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Spectra</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PHDEQBmALJYILUPAHkJtIodjE3vVniQgkSEeQuCvoVl7v7J3BZxPbmyj_niUHV0VK5fHombeYQeiEks-U1PRLCIzUshHDHppR3YiKKHH_bldzeoA-5PxACJdKin10UDea11roGfJL43xMLqzwV5fAFheD8XhhTSnwt13WKY6rNb4xqwDFWWxCjy_9RNP0uYM8DQQLGbuAF2P32_wCD2FV1njhvLMx4B8mxN7lx3yE3g_GZzh-fQ_R8upyefG9mt9-u744n1eGUVYqNljay4FxJZlSlDMQwgojrR56paUdGOkEGNNJy1UDjNVEdbKhHBTtO9Ycok_b2KcUf46QS7tx2YL3JkAcc0ulqAmvOW3-T5nWlGpC9ETPttSmmHOCoX1KbmPSn5aS9uUM7e4Mkz19jR27DfQ7-bb3CXzcAmNz-xDHNC09_yPoGcrJj6s</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Staude, Isabelle</creator><creator>Miroshnichenko, Andrey E</creator><creator>Decker, Manuel</creator><creator>Fofang, Nche T</creator><creator>Liu, Sheng</creator><creator>Gonzales, Edward</creator><creator>Dominguez, Jason</creator><creator>Luk, Ting Shan</creator><creator>Neshev, Dragomir N</creator><creator>Brener, Igal</creator><creator>Kivshar, Yuri</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130924</creationdate><title>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</title><author>Staude, Isabelle ; Miroshnichenko, Andrey E ; Decker, Manuel ; Fofang, Nche T ; Liu, Sheng ; Gonzales, Edward ; Dominguez, Jason ; Luk, Ting Shan ; Neshev, Dragomir N ; Brener, Igal ; Kivshar, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dipoles</topic><topic>Interference</topic><topic>Magnetic resonance</topic><topic>Mathematical analysis</topic><topic>Nanostructure</topic><topic>Resonance scattering</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staude, Isabelle</creatorcontrib><creatorcontrib>Miroshnichenko, Andrey E</creatorcontrib><creatorcontrib>Decker, Manuel</creatorcontrib><creatorcontrib>Fofang, Nche T</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Gonzales, Edward</creatorcontrib><creatorcontrib>Dominguez, Jason</creatorcontrib><creatorcontrib>Luk, Ting Shan</creatorcontrib><creatorcontrib>Neshev, Dragomir N</creatorcontrib><creatorcontrib>Brener, Igal</creatorcontrib><creatorcontrib>Kivshar, Yuri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staude, Isabelle</au><au>Miroshnichenko, Andrey E</au><au>Decker, Manuel</au><au>Fofang, Nche T</au><au>Liu, Sheng</au><au>Gonzales, Edward</au><au>Dominguez, Jason</au><au>Luk, Ting Shan</au><au>Neshev, Dragomir N</au><au>Brener, Igal</au><au>Kivshar, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>7</volume><issue>9</issue><spage>7824</spage><epage>7832</epage><pages>7824-7832</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23952969</pmid><doi>10.1021/nn402736f</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-09, Vol.7 (9), p.7824-7832 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762052513 |
source | American Chemical Society Journals |
subjects | Dipoles Interference Magnetic resonance Mathematical analysis Nanostructure Resonance scattering Scattering Silicon Spectra |
title | Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Directional%20Scattering%20through%20Magnetic%20and%20Electric%20Resonances%20in%20Subwavelength%20Silicon%20Nanodisks&rft.jtitle=ACS%20nano&rft.au=Staude,%20Isabelle&rft.date=2013-09-24&rft.volume=7&rft.issue=9&rft.spage=7824&rft.epage=7832&rft.pages=7824-7832&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn402736f&rft_dat=%3Cproquest_cross%3E1762052513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499119009&rft_id=info:pmid/23952969&rfr_iscdi=true |