Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks

Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-09, Vol.7 (9), p.7824-7832
Hauptverfasser: Staude, Isabelle, Miroshnichenko, Andrey E, Decker, Manuel, Fofang, Nche T, Liu, Sheng, Gonzales, Edward, Dominguez, Jason, Luk, Ting Shan, Neshev, Dragomir N, Brener, Igal, Kivshar, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7832
container_issue 9
container_start_page 7824
container_title ACS nano
container_volume 7
creator Staude, Isabelle
Miroshnichenko, Andrey E
Decker, Manuel
Fofang, Nche T
Liu, Sheng
Gonzales, Edward
Dominguez, Jason
Luk, Ting Shan
Neshev, Dragomir N
Brener, Igal
Kivshar, Yuri
description Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.
doi_str_mv 10.1021/nn402736f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762052513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052513</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</originalsourceid><addsrcrecordid>eNqF0T1PHDEQBmALJYILUPAHkJtIodjE3vVniQgkSEeQuCvoVl7v7J3BZxPbmyj_niUHV0VK5fHombeYQeiEks-U1PRLCIzUshHDHppR3YiKKHH_bldzeoA-5PxACJdKin10UDea11roGfJL43xMLqzwV5fAFheD8XhhTSnwt13WKY6rNb4xqwDFWWxCjy_9RNP0uYM8DQQLGbuAF2P32_wCD2FV1njhvLMx4B8mxN7lx3yE3g_GZzh-fQ_R8upyefG9mt9-u744n1eGUVYqNljay4FxJZlSlDMQwgojrR56paUdGOkEGNNJy1UDjNVEdbKhHBTtO9Ycok_b2KcUf46QS7tx2YL3JkAcc0ulqAmvOW3-T5nWlGpC9ETPttSmmHOCoX1KbmPSn5aS9uUM7e4Mkz19jR27DfQ7-bb3CXzcAmNz-xDHNC09_yPoGcrJj6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499119009</pqid></control><display><type>article</type><title>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</title><source>American Chemical Society Journals</source><creator>Staude, Isabelle ; Miroshnichenko, Andrey E ; Decker, Manuel ; Fofang, Nche T ; Liu, Sheng ; Gonzales, Edward ; Dominguez, Jason ; Luk, Ting Shan ; Neshev, Dragomir N ; Brener, Igal ; Kivshar, Yuri</creator><creatorcontrib>Staude, Isabelle ; Miroshnichenko, Andrey E ; Decker, Manuel ; Fofang, Nche T ; Liu, Sheng ; Gonzales, Edward ; Dominguez, Jason ; Luk, Ting Shan ; Neshev, Dragomir N ; Brener, Igal ; Kivshar, Yuri</creatorcontrib><description>Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn402736f</identifier><identifier>PMID: 23952969</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Dipoles ; Interference ; Magnetic resonance ; Mathematical analysis ; Nanostructure ; Resonance scattering ; Scattering ; Silicon ; Spectra</subject><ispartof>ACS nano, 2013-09, Vol.7 (9), p.7824-7832</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</citedby><cites>FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn402736f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn402736f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23952969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Staude, Isabelle</creatorcontrib><creatorcontrib>Miroshnichenko, Andrey E</creatorcontrib><creatorcontrib>Decker, Manuel</creatorcontrib><creatorcontrib>Fofang, Nche T</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Gonzales, Edward</creatorcontrib><creatorcontrib>Dominguez, Jason</creatorcontrib><creatorcontrib>Luk, Ting Shan</creatorcontrib><creatorcontrib>Neshev, Dragomir N</creatorcontrib><creatorcontrib>Brener, Igal</creatorcontrib><creatorcontrib>Kivshar, Yuri</creatorcontrib><title>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.</description><subject>Dipoles</subject><subject>Interference</subject><subject>Magnetic resonance</subject><subject>Mathematical analysis</subject><subject>Nanostructure</subject><subject>Resonance scattering</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Spectra</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PHDEQBmALJYILUPAHkJtIodjE3vVniQgkSEeQuCvoVl7v7J3BZxPbmyj_niUHV0VK5fHombeYQeiEks-U1PRLCIzUshHDHppR3YiKKHH_bldzeoA-5PxACJdKin10UDea11roGfJL43xMLqzwV5fAFheD8XhhTSnwt13WKY6rNb4xqwDFWWxCjy_9RNP0uYM8DQQLGbuAF2P32_wCD2FV1njhvLMx4B8mxN7lx3yE3g_GZzh-fQ_R8upyefG9mt9-u744n1eGUVYqNljay4FxJZlSlDMQwgojrR56paUdGOkEGNNJy1UDjNVEdbKhHBTtO9Ycok_b2KcUf46QS7tx2YL3JkAcc0ulqAmvOW3-T5nWlGpC9ETPttSmmHOCoX1KbmPSn5aS9uUM7e4Mkz19jR27DfQ7-bb3CXzcAmNz-xDHNC09_yPoGcrJj6s</recordid><startdate>20130924</startdate><enddate>20130924</enddate><creator>Staude, Isabelle</creator><creator>Miroshnichenko, Andrey E</creator><creator>Decker, Manuel</creator><creator>Fofang, Nche T</creator><creator>Liu, Sheng</creator><creator>Gonzales, Edward</creator><creator>Dominguez, Jason</creator><creator>Luk, Ting Shan</creator><creator>Neshev, Dragomir N</creator><creator>Brener, Igal</creator><creator>Kivshar, Yuri</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130924</creationdate><title>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</title><author>Staude, Isabelle ; Miroshnichenko, Andrey E ; Decker, Manuel ; Fofang, Nche T ; Liu, Sheng ; Gonzales, Edward ; Dominguez, Jason ; Luk, Ting Shan ; Neshev, Dragomir N ; Brener, Igal ; Kivshar, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-4fc1d7f4587488154e66c6a7c9fd897cf40b6eaab7c583e44208b7315e81db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dipoles</topic><topic>Interference</topic><topic>Magnetic resonance</topic><topic>Mathematical analysis</topic><topic>Nanostructure</topic><topic>Resonance scattering</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Staude, Isabelle</creatorcontrib><creatorcontrib>Miroshnichenko, Andrey E</creatorcontrib><creatorcontrib>Decker, Manuel</creatorcontrib><creatorcontrib>Fofang, Nche T</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Gonzales, Edward</creatorcontrib><creatorcontrib>Dominguez, Jason</creatorcontrib><creatorcontrib>Luk, Ting Shan</creatorcontrib><creatorcontrib>Neshev, Dragomir N</creatorcontrib><creatorcontrib>Brener, Igal</creatorcontrib><creatorcontrib>Kivshar, Yuri</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Staude, Isabelle</au><au>Miroshnichenko, Andrey E</au><au>Decker, Manuel</au><au>Fofang, Nche T</au><au>Liu, Sheng</au><au>Gonzales, Edward</au><au>Dominguez, Jason</au><au>Luk, Ting Shan</au><au>Neshev, Dragomir N</au><au>Brener, Igal</au><au>Kivshar, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-09-24</date><risdate>2013</risdate><volume>7</volume><issue>9</issue><spage>7824</spage><epage>7832</epage><pages>7824-7832</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk’s fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle’s resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23952969</pmid><doi>10.1021/nn402736f</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-09, Vol.7 (9), p.7824-7832
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762052513
source American Chemical Society Journals
subjects Dipoles
Interference
Magnetic resonance
Mathematical analysis
Nanostructure
Resonance scattering
Scattering
Silicon
Spectra
title Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Directional%20Scattering%20through%20Magnetic%20and%20Electric%20Resonances%20in%20Subwavelength%20Silicon%20Nanodisks&rft.jtitle=ACS%20nano&rft.au=Staude,%20Isabelle&rft.date=2013-09-24&rft.volume=7&rft.issue=9&rft.spage=7824&rft.epage=7832&rft.pages=7824-7832&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn402736f&rft_dat=%3Cproquest_cross%3E1762052513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499119009&rft_id=info:pmid/23952969&rfr_iscdi=true