Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO sub(2) Nanocomposites for Lithium Ion Battery
From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO sub(2) composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO sub(2)-based electrode materials. RGO/SnO sub(2)...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013-04, Vol.13 (4), p.1711-1716-1711-1716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1716-1711-1716 |
---|---|
container_issue | 4 |
container_start_page | 1711 |
container_title | Nano letters |
container_volume | 13 |
creator | Wang, Lei Wang, Dong Dong, Zhihui Zhang, Fengxing Jin, Jian |
description | From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO sub(2) composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO sub(2)-based electrode materials. RGO/SnO sub(2) composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO sub(2) composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs. |
doi_str_mv | 10.1021/nl400269d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762052500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762052500</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17620525003</originalsourceid><addsrcrecordid>eNqVjs1OwzAQhC0EEuXnwBvssRxK104TyJWqlEqISpR75Tqb1sixi9c-5O0JCHHnNKPRN5oR4kbinUQlp97NEFVVNydiJMsCJ1Vdq9M__zA7FxfMH4hYFyWORFz5RLHVhmB-oM5yij0s_N56omj9HtoQYZP0zg1Ab9x3FFp4oyYbamC5nm78GjjvxuoWXrUPJnTHwDYR_1RfbDrY3MEqeHjUadjqr8RZqx3T9a9eivHT4n3-PDnG8JmJ03a4Ycg57Slk3sr7SmGpSsTiH-gXZEhTmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762052500</pqid></control><display><type>article</type><title>Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO sub(2) Nanocomposites for Lithium Ion Battery</title><source>ACS Publications</source><creator>Wang, Lei ; Wang, Dong ; Dong, Zhihui ; Zhang, Fengxing ; Jin, Jian</creator><creatorcontrib>Wang, Lei ; Wang, Dong ; Dong, Zhihui ; Zhang, Fengxing ; Jin, Jian</creatorcontrib><description>From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO sub(2) composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO sub(2)-based electrode materials. RGO/SnO sub(2) composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO sub(2) composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl400269d</identifier><language>eng</language><subject>Anodes ; Crosslinking ; Current density ; Cycles ; Electrodes ; Lithium-ion batteries ; Nanostructure ; Networks ; Tin dioxide ; Tin oxides</subject><ispartof>Nano letters, 2013-04, Vol.13 (4), p.1711-1716-1711-1716</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Dong, Zhihui</creatorcontrib><creatorcontrib>Zhang, Fengxing</creatorcontrib><creatorcontrib>Jin, Jian</creatorcontrib><title>Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO sub(2) Nanocomposites for Lithium Ion Battery</title><title>Nano letters</title><description>From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO sub(2) composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO sub(2)-based electrode materials. RGO/SnO sub(2) composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO sub(2) composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.</description><subject>Anodes</subject><subject>Crosslinking</subject><subject>Current density</subject><subject>Cycles</subject><subject>Electrodes</subject><subject>Lithium-ion batteries</subject><subject>Nanostructure</subject><subject>Networks</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjs1OwzAQhC0EEuXnwBvssRxK104TyJWqlEqISpR75Tqb1sixi9c-5O0JCHHnNKPRN5oR4kbinUQlp97NEFVVNydiJMsCJ1Vdq9M__zA7FxfMH4hYFyWORFz5RLHVhmB-oM5yij0s_N56omj9HtoQYZP0zg1Ab9x3FFp4oyYbamC5nm78GjjvxuoWXrUPJnTHwDYR_1RfbDrY3MEqeHjUadjqr8RZqx3T9a9eivHT4n3-PDnG8JmJ03a4Ycg57Slk3sr7SmGpSsTiH-gXZEhTmw</recordid><startdate>20130410</startdate><enddate>20130410</enddate><creator>Wang, Lei</creator><creator>Wang, Dong</creator><creator>Dong, Zhihui</creator><creator>Zhang, Fengxing</creator><creator>Jin, Jian</creator><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130410</creationdate><title>Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO sub(2) Nanocomposites for Lithium Ion Battery</title><author>Wang, Lei ; Wang, Dong ; Dong, Zhihui ; Zhang, Fengxing ; Jin, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17620525003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anodes</topic><topic>Crosslinking</topic><topic>Current density</topic><topic>Cycles</topic><topic>Electrodes</topic><topic>Lithium-ion batteries</topic><topic>Nanostructure</topic><topic>Networks</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Dong, Zhihui</creatorcontrib><creatorcontrib>Zhang, Fengxing</creatorcontrib><creatorcontrib>Jin, Jian</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lei</au><au>Wang, Dong</au><au>Dong, Zhihui</au><au>Zhang, Fengxing</au><au>Jin, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO sub(2) Nanocomposites for Lithium Ion Battery</atitle><jtitle>Nano letters</jtitle><date>2013-04-10</date><risdate>2013</risdate><volume>13</volume><issue>4</issue><spage>1711</spage><epage>1716-1711-1716</epage><pages>1711-1716-1711-1716</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO sub(2) composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO sub(2)-based electrode materials. RGO/SnO sub(2) composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO sub(2) composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.</abstract><doi>10.1021/nl400269d</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2013-04, Vol.13 (4), p.1711-1716-1711-1716 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762052500 |
source | ACS Publications |
subjects | Anodes Crosslinking Current density Cycles Electrodes Lithium-ion batteries Nanostructure Networks Tin dioxide Tin oxides |
title | Interface Chemistry Engineering for Stable Cycling of Reduced GO/SnO sub(2) Nanocomposites for Lithium Ion Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20Chemistry%20Engineering%20for%20Stable%20Cycling%20of%20Reduced%20GO/SnO%20sub(2)%20Nanocomposites%20for%20Lithium%20Ion%20Battery&rft.jtitle=Nano%20letters&rft.au=Wang,%20Lei&rft.date=2013-04-10&rft.volume=13&rft.issue=4&rft.spage=1711&rft.epage=1716-1711-1716&rft.pages=1711-1716-1711-1716&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl400269d&rft_dat=%3Cproquest%3E1762052500%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762052500&rft_id=info:pmid/&rfr_iscdi=true |