Bioelectronic Tongue Using Heterodimeric Human Taste Receptor for the Discrimination of Sweeteners with Human-like Performance

The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-10, Vol.8 (10), p.9781-9789
Hauptverfasser: Song, Hyun Seok, Jin, Hye Jun, Ahn, Sae Ryun, Kim, Daesan, Lee, Sang Hun, Kim, Un-Kyung, Simons, Christopher T, Hong, Seunghun, Park, Tai Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn502926x