Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture

We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This opt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2012-09, Vol.6 (9), p.7850-7857
Hauptverfasser: Vasdekis, Andreas E, Scott, Evan A, O’Neil, Conlin P, Psaltis, Demetri, Hubbell, Jeffrey. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7857
container_issue 9
container_start_page 7850
container_title ACS nano
container_volume 6
creator Vasdekis, Andreas E
Scott, Evan A
O’Neil, Conlin P
Psaltis, Demetri
Hubbell, Jeffrey. A
description We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.
doi_str_mv 10.1021/nn302122h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762051057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762051057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK0u_AOSjaCL6LyTWWp9FQotouAuTCYzmJJk4kxG6L93SmtXgqtzL_fjcO4B4BzBGwQxuu06EgXjzwMwRoLwFOb843A_MzQCJ96vIGRZnvFjMMJYbBYxBrOl06r2te2SWTc4qXTThEa65EE39bd26-Reel0l8b7oB2uaUFe1Spa2Wbfaedvq5DX0Q3D6FBwZ2Xh9ttMJeH96fJu-pPPF82x6N08lycmQYs4yijEiJmYpKSq1zATVSkjDIC6FUojispI0F5woakpCOBMSm4qVGYWGTMDV1rd39itoPxRt7TexZadt8AXKOIYMxff-R2EOOSOQ8Iheb1HlrPdOm6J3dSvdOkLFpuRiX3JkL3a2oWx1tSd_W43A5RaQyhcrG1wXC_nD6AffAYKL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080653036</pqid></control><display><type>article</type><title>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</title><source>MEDLINE</source><source>ACS Publications</source><creator>Vasdekis, Andreas E ; Scott, Evan A ; O’Neil, Conlin P ; Psaltis, Demetri ; Hubbell, Jeffrey. A</creator><creatorcontrib>Vasdekis, Andreas E ; Scott, Evan A ; O’Neil, Conlin P ; Psaltis, Demetri ; Hubbell, Jeffrey. A</creatorcontrib><description>We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn302122h</identifier><identifier>PMID: 22900579</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antigens ; Carriers ; Cells, Cultured ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - radiation effects ; Dendritic Cells - chemistry ; Diffusion - radiation effects ; Humans ; Hydrophilicity ; Illumination ; Light ; Materials Testing ; Micelles ; Nanocapsules - chemistry ; Nanocapsules - radiation effects ; Nanostructure ; Payloads ; Peptides ; Polymers - chemistry ; Polymers - radiation effects ; Rupture</subject><ispartof>ACS nano, 2012-09, Vol.6 (9), p.7850-7857</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</citedby><cites>FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn302122h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn302122h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22900579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasdekis, Andreas E</creatorcontrib><creatorcontrib>Scott, Evan A</creatorcontrib><creatorcontrib>O’Neil, Conlin P</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><creatorcontrib>Hubbell, Jeffrey. A</creatorcontrib><title>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.</description><subject>Antigens</subject><subject>Carriers</subject><subject>Cells, Cultured</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - radiation effects</subject><subject>Dendritic Cells - chemistry</subject><subject>Diffusion - radiation effects</subject><subject>Humans</subject><subject>Hydrophilicity</subject><subject>Illumination</subject><subject>Light</subject><subject>Materials Testing</subject><subject>Micelles</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - radiation effects</subject><subject>Nanostructure</subject><subject>Payloads</subject><subject>Peptides</subject><subject>Polymers - chemistry</subject><subject>Polymers - radiation effects</subject><subject>Rupture</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AUhQdRbK0u_AOSjaCL6LyTWWp9FQotouAuTCYzmJJk4kxG6L93SmtXgqtzL_fjcO4B4BzBGwQxuu06EgXjzwMwRoLwFOb843A_MzQCJ96vIGRZnvFjMMJYbBYxBrOl06r2te2SWTc4qXTThEa65EE39bd26-Reel0l8b7oB2uaUFe1Spa2Wbfaedvq5DX0Q3D6FBwZ2Xh9ttMJeH96fJu-pPPF82x6N08lycmQYs4yijEiJmYpKSq1zATVSkjDIC6FUojispI0F5woakpCOBMSm4qVGYWGTMDV1rd39itoPxRt7TexZadt8AXKOIYMxff-R2EOOSOQ8Iheb1HlrPdOm6J3dSvdOkLFpuRiX3JkL3a2oWx1tSd_W43A5RaQyhcrG1wXC_nD6AffAYKL</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Vasdekis, Andreas E</creator><creator>Scott, Evan A</creator><creator>O’Neil, Conlin P</creator><creator>Psaltis, Demetri</creator><creator>Hubbell, Jeffrey. A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120925</creationdate><title>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</title><author>Vasdekis, Andreas E ; Scott, Evan A ; O’Neil, Conlin P ; Psaltis, Demetri ; Hubbell, Jeffrey. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antigens</topic><topic>Carriers</topic><topic>Cells, Cultured</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - radiation effects</topic><topic>Dendritic Cells - chemistry</topic><topic>Diffusion - radiation effects</topic><topic>Humans</topic><topic>Hydrophilicity</topic><topic>Illumination</topic><topic>Light</topic><topic>Materials Testing</topic><topic>Micelles</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - radiation effects</topic><topic>Nanostructure</topic><topic>Payloads</topic><topic>Peptides</topic><topic>Polymers - chemistry</topic><topic>Polymers - radiation effects</topic><topic>Rupture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasdekis, Andreas E</creatorcontrib><creatorcontrib>Scott, Evan A</creatorcontrib><creatorcontrib>O’Neil, Conlin P</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><creatorcontrib>Hubbell, Jeffrey. A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasdekis, Andreas E</au><au>Scott, Evan A</au><au>O’Neil, Conlin P</au><au>Psaltis, Demetri</au><au>Hubbell, Jeffrey. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-09-25</date><risdate>2012</risdate><volume>6</volume><issue>9</issue><spage>7850</spage><epage>7857</epage><pages>7850-7857</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22900579</pmid><doi>10.1021/nn302122h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2012-09, Vol.6 (9), p.7850-7857
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1762051057
source MEDLINE; ACS Publications
subjects Antigens
Carriers
Cells, Cultured
Delayed-Action Preparations - chemistry
Delayed-Action Preparations - radiation effects
Dendritic Cells - chemistry
Diffusion - radiation effects
Humans
Hydrophilicity
Illumination
Light
Materials Testing
Micelles
Nanocapsules - chemistry
Nanocapsules - radiation effects
Nanostructure
Payloads
Peptides
Polymers - chemistry
Polymers - radiation effects
Rupture
title Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20Intracellular%20Delivery%20Based%20on%20Optofluidic%20Polymersome%20Rupture&rft.jtitle=ACS%20nano&rft.au=Vasdekis,%20Andreas%20E&rft.date=2012-09-25&rft.volume=6&rft.issue=9&rft.spage=7850&rft.epage=7857&rft.pages=7850-7857&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn302122h&rft_dat=%3Cproquest_cross%3E1762051057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080653036&rft_id=info:pmid/22900579&rfr_iscdi=true