Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture
We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This opt...
Gespeichert in:
Veröffentlicht in: | ACS nano 2012-09, Vol.6 (9), p.7850-7857 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7857 |
---|---|
container_issue | 9 |
container_start_page | 7850 |
container_title | ACS nano |
container_volume | 6 |
creator | Vasdekis, Andreas E Scott, Evan A O’Neil, Conlin P Psaltis, Demetri Hubbell, Jeffrey. A |
description | We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level. |
doi_str_mv | 10.1021/nn302122h |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762051057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762051057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRbK0u_AOSjaCL6LyTWWp9FQotouAuTCYzmJJk4kxG6L93SmtXgqtzL_fjcO4B4BzBGwQxuu06EgXjzwMwRoLwFOb843A_MzQCJ96vIGRZnvFjMMJYbBYxBrOl06r2te2SWTc4qXTThEa65EE39bd26-Reel0l8b7oB2uaUFe1Spa2Wbfaedvq5DX0Q3D6FBwZ2Xh9ttMJeH96fJu-pPPF82x6N08lycmQYs4yijEiJmYpKSq1zATVSkjDIC6FUojispI0F5woakpCOBMSm4qVGYWGTMDV1rd39itoPxRt7TexZadt8AXKOIYMxff-R2EOOSOQ8Iheb1HlrPdOm6J3dSvdOkLFpuRiX3JkL3a2oWx1tSd_W43A5RaQyhcrG1wXC_nD6AffAYKL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080653036</pqid></control><display><type>article</type><title>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</title><source>MEDLINE</source><source>ACS Publications</source><creator>Vasdekis, Andreas E ; Scott, Evan A ; O’Neil, Conlin P ; Psaltis, Demetri ; Hubbell, Jeffrey. A</creator><creatorcontrib>Vasdekis, Andreas E ; Scott, Evan A ; O’Neil, Conlin P ; Psaltis, Demetri ; Hubbell, Jeffrey. A</creatorcontrib><description>We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn302122h</identifier><identifier>PMID: 22900579</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Antigens ; Carriers ; Cells, Cultured ; Delayed-Action Preparations - chemistry ; Delayed-Action Preparations - radiation effects ; Dendritic Cells - chemistry ; Diffusion - radiation effects ; Humans ; Hydrophilicity ; Illumination ; Light ; Materials Testing ; Micelles ; Nanocapsules - chemistry ; Nanocapsules - radiation effects ; Nanostructure ; Payloads ; Peptides ; Polymers - chemistry ; Polymers - radiation effects ; Rupture</subject><ispartof>ACS nano, 2012-09, Vol.6 (9), p.7850-7857</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</citedby><cites>FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn302122h$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn302122h$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22900579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasdekis, Andreas E</creatorcontrib><creatorcontrib>Scott, Evan A</creatorcontrib><creatorcontrib>O’Neil, Conlin P</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><creatorcontrib>Hubbell, Jeffrey. A</creatorcontrib><title>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.</description><subject>Antigens</subject><subject>Carriers</subject><subject>Cells, Cultured</subject><subject>Delayed-Action Preparations - chemistry</subject><subject>Delayed-Action Preparations - radiation effects</subject><subject>Dendritic Cells - chemistry</subject><subject>Diffusion - radiation effects</subject><subject>Humans</subject><subject>Hydrophilicity</subject><subject>Illumination</subject><subject>Light</subject><subject>Materials Testing</subject><subject>Micelles</subject><subject>Nanocapsules - chemistry</subject><subject>Nanocapsules - radiation effects</subject><subject>Nanostructure</subject><subject>Payloads</subject><subject>Peptides</subject><subject>Polymers - chemistry</subject><subject>Polymers - radiation effects</subject><subject>Rupture</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEtLw0AUhQdRbK0u_AOSjaCL6LyTWWp9FQotouAuTCYzmJJk4kxG6L93SmtXgqtzL_fjcO4B4BzBGwQxuu06EgXjzwMwRoLwFOb843A_MzQCJ96vIGRZnvFjMMJYbBYxBrOl06r2te2SWTc4qXTThEa65EE39bd26-Reel0l8b7oB2uaUFe1Spa2Wbfaedvq5DX0Q3D6FBwZ2Xh9ttMJeH96fJu-pPPF82x6N08lycmQYs4yijEiJmYpKSq1zATVSkjDIC6FUojispI0F5woakpCOBMSm4qVGYWGTMDV1rd39itoPxRt7TexZadt8AXKOIYMxff-R2EOOSOQ8Iheb1HlrPdOm6J3dSvdOkLFpuRiX3JkL3a2oWx1tSd_W43A5RaQyhcrG1wXC_nD6AffAYKL</recordid><startdate>20120925</startdate><enddate>20120925</enddate><creator>Vasdekis, Andreas E</creator><creator>Scott, Evan A</creator><creator>O’Neil, Conlin P</creator><creator>Psaltis, Demetri</creator><creator>Hubbell, Jeffrey. A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120925</creationdate><title>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</title><author>Vasdekis, Andreas E ; Scott, Evan A ; O’Neil, Conlin P ; Psaltis, Demetri ; Hubbell, Jeffrey. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a383t-265742213f787b41bea794ec9af502b9cc142bda48963c4fb33659a2fd5b740f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Antigens</topic><topic>Carriers</topic><topic>Cells, Cultured</topic><topic>Delayed-Action Preparations - chemistry</topic><topic>Delayed-Action Preparations - radiation effects</topic><topic>Dendritic Cells - chemistry</topic><topic>Diffusion - radiation effects</topic><topic>Humans</topic><topic>Hydrophilicity</topic><topic>Illumination</topic><topic>Light</topic><topic>Materials Testing</topic><topic>Micelles</topic><topic>Nanocapsules - chemistry</topic><topic>Nanocapsules - radiation effects</topic><topic>Nanostructure</topic><topic>Payloads</topic><topic>Peptides</topic><topic>Polymers - chemistry</topic><topic>Polymers - radiation effects</topic><topic>Rupture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasdekis, Andreas E</creatorcontrib><creatorcontrib>Scott, Evan A</creatorcontrib><creatorcontrib>O’Neil, Conlin P</creatorcontrib><creatorcontrib>Psaltis, Demetri</creatorcontrib><creatorcontrib>Hubbell, Jeffrey. A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasdekis, Andreas E</au><au>Scott, Evan A</au><au>O’Neil, Conlin P</au><au>Psaltis, Demetri</au><au>Hubbell, Jeffrey. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-09-25</date><risdate>2012</risdate><volume>6</volume><issue>9</issue><spage>7850</spage><epage>7857</epage><pages>7850-7857</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes’ payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22900579</pmid><doi>10.1021/nn302122h</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2012-09, Vol.6 (9), p.7850-7857 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1762051057 |
source | MEDLINE; ACS Publications |
subjects | Antigens Carriers Cells, Cultured Delayed-Action Preparations - chemistry Delayed-Action Preparations - radiation effects Dendritic Cells - chemistry Diffusion - radiation effects Humans Hydrophilicity Illumination Light Materials Testing Micelles Nanocapsules - chemistry Nanocapsules - radiation effects Nanostructure Payloads Peptides Polymers - chemistry Polymers - radiation effects Rupture |
title | Precision Intracellular Delivery Based on Optofluidic Polymersome Rupture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precision%20Intracellular%20Delivery%20Based%20on%20Optofluidic%20Polymersome%20Rupture&rft.jtitle=ACS%20nano&rft.au=Vasdekis,%20Andreas%20E&rft.date=2012-09-25&rft.volume=6&rft.issue=9&rft.spage=7850&rft.epage=7857&rft.pages=7850-7857&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn302122h&rft_dat=%3Cproquest_cross%3E1762051057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080653036&rft_id=info:pmid/22900579&rfr_iscdi=true |