Spin Relaxation in Single-Layer Graphene with Tunable Mobility
Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically...
Gespeichert in:
Veröffentlicht in: | Nano letters 2012-07, Vol.12 (7), p.3443-3447 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3447 |
---|---|
container_issue | 7 |
container_start_page | 3443 |
container_title | Nano letters |
container_volume | 12 |
creator | Han, Wei Chen, Jen-Ru Wang, Deqi McCreary, Kathleen M Wen, Hua Swartz, Adrian G Shi, Jing Kawakami, Roland K |
description | Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering. |
doi_str_mv | 10.1021/nl301567n |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049804</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgitbqwT8gexH0sJpkN9nkIoj4BRXB6nmZbGc1Jc3WZBftv3eLtb0InmYGHt6Bl5AjRs8Z5ezCu4wyIQu_RQZMZDSVWvPt9a7yPbIf45RSqjNBd8ke5wUXkqsBuRzPrU-e0cEXtLbxSX-NrX9zmI5ggSG5CzB_R4_Jp23fk5fOg3GYPDbGOtsuDshODS7i4WoOyevtzcv1fTp6unu4vhqlkBWqTbkAqSYMC6qRK53VhmmQZiKoBJScZbqSipu6YBlWQmiuAAwXNRYTRGNUNiSnP7nz0Hx0GNtyZmOFzoHHposlKySnuVY0_59SnstcMrZMPfuhVWhiDFiX82BnEBY9WjpWrpvt7fEqtjMznKzlb5U9OFkBiBW4OoCvbNw4yfJcinzjoIrltOmC74v74-E3QnKK0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024646118</pqid></control><display><type>article</type><title>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</title><source>ACS Publications</source><creator>Han, Wei ; Chen, Jen-Ru ; Wang, Deqi ; McCreary, Kathleen M ; Wen, Hua ; Swartz, Adrian G ; Shi, Jing ; Kawakami, Roland K</creator><creatorcontrib>Han, Wei ; Chen, Jen-Ru ; Wang, Deqi ; McCreary, Kathleen M ; Wen, Hua ; Swartz, Adrian G ; Shi, Jing ; Kawakami, Roland K</creatorcontrib><description>Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl301567n</identifier><identifier>PMID: 22725628</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Charging ; Couplings ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Impurities ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Materials science ; Nanocrystalline materials ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Origins ; Physics ; Scattering ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Spintronics</subject><ispartof>Nano letters, 2012-07, Vol.12 (7), p.3443-3447</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</citedby><cites>FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl301567n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl301567n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26144654$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22725628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Chen, Jen-Ru</creatorcontrib><creatorcontrib>Wang, Deqi</creatorcontrib><creatorcontrib>McCreary, Kathleen M</creatorcontrib><creatorcontrib>Wen, Hua</creatorcontrib><creatorcontrib>Swartz, Adrian G</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Kawakami, Roland K</creatorcontrib><title>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.</description><subject>Applied sciences</subject><subject>Charging</subject><subject>Couplings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Impurities</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Origins</subject><subject>Physics</subject><subject>Scattering</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Spintronics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgitbqwT8gexH0sJpkN9nkIoj4BRXB6nmZbGc1Jc3WZBftv3eLtb0InmYGHt6Bl5AjRs8Z5ezCu4wyIQu_RQZMZDSVWvPt9a7yPbIf45RSqjNBd8ke5wUXkqsBuRzPrU-e0cEXtLbxSX-NrX9zmI5ggSG5CzB_R4_Jp23fk5fOg3GYPDbGOtsuDshODS7i4WoOyevtzcv1fTp6unu4vhqlkBWqTbkAqSYMC6qRK53VhmmQZiKoBJScZbqSipu6YBlWQmiuAAwXNRYTRGNUNiSnP7nz0Hx0GNtyZmOFzoHHposlKySnuVY0_59SnstcMrZMPfuhVWhiDFiX82BnEBY9WjpWrpvt7fEqtjMznKzlb5U9OFkBiBW4OoCvbNw4yfJcinzjoIrltOmC74v74-E3QnKK0w</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Han, Wei</creator><creator>Chen, Jen-Ru</creator><creator>Wang, Deqi</creator><creator>McCreary, Kathleen M</creator><creator>Wen, Hua</creator><creator>Swartz, Adrian G</creator><creator>Shi, Jing</creator><creator>Kawakami, Roland K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120711</creationdate><title>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</title><author>Han, Wei ; Chen, Jen-Ru ; Wang, Deqi ; McCreary, Kathleen M ; Wen, Hua ; Swartz, Adrian G ; Shi, Jing ; Kawakami, Roland K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Charging</topic><topic>Couplings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Impurities</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Origins</topic><topic>Physics</topic><topic>Scattering</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Chen, Jen-Ru</creatorcontrib><creatorcontrib>Wang, Deqi</creatorcontrib><creatorcontrib>McCreary, Kathleen M</creatorcontrib><creatorcontrib>Wen, Hua</creatorcontrib><creatorcontrib>Swartz, Adrian G</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Kawakami, Roland K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Wei</au><au>Chen, Jen-Ru</au><au>Wang, Deqi</au><au>McCreary, Kathleen M</au><au>Wen, Hua</au><au>Swartz, Adrian G</au><au>Shi, Jing</au><au>Kawakami, Roland K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-07-11</date><risdate>2012</risdate><volume>12</volume><issue>7</issue><spage>3443</spage><epage>3447</epage><pages>3443-3447</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22725628</pmid><doi>10.1021/nl301567n</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-07, Vol.12 (7), p.3443-3447 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762049804 |
source | ACS Publications |
subjects | Applied sciences Charging Couplings Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Fullerenes and related materials diamonds, graphite Graphene Impurities Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics Materials science Nanocrystalline materials Nanoparticles Nanoscale materials and structures: fabrication and characterization Nanostructure Origins Physics Scattering Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Specific materials Spintronics |
title | Spin Relaxation in Single-Layer Graphene with Tunable Mobility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Relaxation%20in%20Single-Layer%20Graphene%20with%20Tunable%20Mobility&rft.jtitle=Nano%20letters&rft.au=Han,%20Wei&rft.date=2012-07-11&rft.volume=12&rft.issue=7&rft.spage=3443&rft.epage=3447&rft.pages=3443-3447&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl301567n&rft_dat=%3Cproquest_cross%3E1762049804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024646118&rft_id=info:pmid/22725628&rfr_iscdi=true |