Spin Relaxation in Single-Layer Graphene with Tunable Mobility

Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2012-07, Vol.12 (7), p.3443-3447
Hauptverfasser: Han, Wei, Chen, Jen-Ru, Wang, Deqi, McCreary, Kathleen M, Wen, Hua, Swartz, Adrian G, Shi, Jing, Kawakami, Roland K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3447
container_issue 7
container_start_page 3443
container_title Nano letters
container_volume 12
creator Han, Wei
Chen, Jen-Ru
Wang, Deqi
McCreary, Kathleen M
Wen, Hua
Swartz, Adrian G
Shi, Jing
Kawakami, Roland K
description Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.
doi_str_mv 10.1021/nl301567n
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049804</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</originalsourceid><addsrcrecordid>eNqF0E1LAzEQBuAgitbqwT8gexH0sJpkN9nkIoj4BRXB6nmZbGc1Jc3WZBftv3eLtb0InmYGHt6Bl5AjRs8Z5ezCu4wyIQu_RQZMZDSVWvPt9a7yPbIf45RSqjNBd8ke5wUXkqsBuRzPrU-e0cEXtLbxSX-NrX9zmI5ggSG5CzB_R4_Jp23fk5fOg3GYPDbGOtsuDshODS7i4WoOyevtzcv1fTp6unu4vhqlkBWqTbkAqSYMC6qRK53VhmmQZiKoBJScZbqSipu6YBlWQmiuAAwXNRYTRGNUNiSnP7nz0Hx0GNtyZmOFzoHHposlKySnuVY0_59SnstcMrZMPfuhVWhiDFiX82BnEBY9WjpWrpvt7fEqtjMznKzlb5U9OFkBiBW4OoCvbNw4yfJcinzjoIrltOmC74v74-E3QnKK0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024646118</pqid></control><display><type>article</type><title>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</title><source>ACS Publications</source><creator>Han, Wei ; Chen, Jen-Ru ; Wang, Deqi ; McCreary, Kathleen M ; Wen, Hua ; Swartz, Adrian G ; Shi, Jing ; Kawakami, Roland K</creator><creatorcontrib>Han, Wei ; Chen, Jen-Ru ; Wang, Deqi ; McCreary, Kathleen M ; Wen, Hua ; Swartz, Adrian G ; Shi, Jing ; Kawakami, Roland K</creatorcontrib><description>Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl301567n</identifier><identifier>PMID: 22725628</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Charging ; Couplings ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Impurities ; Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics ; Materials science ; Nanocrystalline materials ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Origins ; Physics ; Scattering ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Specific materials ; Spintronics</subject><ispartof>Nano letters, 2012-07, Vol.12 (7), p.3443-3447</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</citedby><cites>FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl301567n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl301567n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26144654$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22725628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Chen, Jen-Ru</creatorcontrib><creatorcontrib>Wang, Deqi</creatorcontrib><creatorcontrib>McCreary, Kathleen M</creatorcontrib><creatorcontrib>Wen, Hua</creatorcontrib><creatorcontrib>Swartz, Adrian G</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Kawakami, Roland K</creatorcontrib><title>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.</description><subject>Applied sciences</subject><subject>Charging</subject><subject>Couplings</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Impurities</subject><subject>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Origins</subject><subject>Physics</subject><subject>Scattering</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Specific materials</subject><subject>Spintronics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LAzEQBuAgitbqwT8gexH0sJpkN9nkIoj4BRXB6nmZbGc1Jc3WZBftv3eLtb0InmYGHt6Bl5AjRs8Z5ezCu4wyIQu_RQZMZDSVWvPt9a7yPbIf45RSqjNBd8ke5wUXkqsBuRzPrU-e0cEXtLbxSX-NrX9zmI5ggSG5CzB_R4_Jp23fk5fOg3GYPDbGOtsuDshODS7i4WoOyevtzcv1fTp6unu4vhqlkBWqTbkAqSYMC6qRK53VhmmQZiKoBJScZbqSipu6YBlWQmiuAAwXNRYTRGNUNiSnP7nz0Hx0GNtyZmOFzoHHposlKySnuVY0_59SnstcMrZMPfuhVWhiDFiX82BnEBY9WjpWrpvt7fEqtjMznKzlb5U9OFkBiBW4OoCvbNw4yfJcinzjoIrltOmC74v74-E3QnKK0w</recordid><startdate>20120711</startdate><enddate>20120711</enddate><creator>Han, Wei</creator><creator>Chen, Jen-Ru</creator><creator>Wang, Deqi</creator><creator>McCreary, Kathleen M</creator><creator>Wen, Hua</creator><creator>Swartz, Adrian G</creator><creator>Shi, Jing</creator><creator>Kawakami, Roland K</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120711</creationdate><title>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</title><author>Han, Wei ; Chen, Jen-Ru ; Wang, Deqi ; McCreary, Kathleen M ; Wen, Hua ; Swartz, Adrian G ; Shi, Jing ; Kawakami, Roland K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-25a68d1e709e2893fb19a6bd506ae62139c682bf713ec55928aab25fe7deebb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Charging</topic><topic>Couplings</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Impurities</topic><topic>Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Origins</topic><topic>Physics</topic><topic>Scattering</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Specific materials</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Wei</creatorcontrib><creatorcontrib>Chen, Jen-Ru</creatorcontrib><creatorcontrib>Wang, Deqi</creatorcontrib><creatorcontrib>McCreary, Kathleen M</creatorcontrib><creatorcontrib>Wen, Hua</creatorcontrib><creatorcontrib>Swartz, Adrian G</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Kawakami, Roland K</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Wei</au><au>Chen, Jen-Ru</au><au>Wang, Deqi</au><au>McCreary, Kathleen M</au><au>Wen, Hua</au><au>Swartz, Adrian G</au><au>Shi, Jing</au><au>Kawakami, Roland K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin Relaxation in Single-Layer Graphene with Tunable Mobility</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-07-11</date><risdate>2012</risdate><volume>12</volume><issue>7</issue><spage>3443</spage><epage>3447</epage><pages>3443-3447</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Graphene is an attractive material for spintronics due to theoretical predictions of long spin lifetimes arising from low spin–orbit and hyperfine couplings. In experiments, however, spin lifetimes in single-layer graphene (SLG) measured via Hanle effects are much shorter than expected theoretically. Thus, the origin of spin relaxation in SLG is a major issue for graphene spintronics. Despite extensive theoretical and experimental work addressing this question, there is still little clarity on the microscopic origin of spin relaxation. By using organic ligand-bound nanoparticles as charge reservoirs to tune the mobility between 2700 and 12 000 cm2/(V s), we successfully isolate the effect of charged impurity scattering on spin relaxation in SLG. Our results demonstrate that, while charged impurities can greatly affect mobility, the spin lifetimes are not affected by charged impurity scattering.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22725628</pmid><doi>10.1021/nl301567n</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-07, Vol.12 (7), p.3443-3447
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762049804
source ACS Publications
subjects Applied sciences
Charging
Couplings
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Impurities
Magnetoelectric, magnetostrictive, magnetoacoustic, magnetooptic and magnetothermal devices. Spintronics
Materials science
Nanocrystalline materials
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Nanostructure
Origins
Physics
Scattering
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Specific materials
Spintronics
title Spin Relaxation in Single-Layer Graphene with Tunable Mobility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20Relaxation%20in%20Single-Layer%20Graphene%20with%20Tunable%20Mobility&rft.jtitle=Nano%20letters&rft.au=Han,%20Wei&rft.date=2012-07-11&rft.volume=12&rft.issue=7&rft.spage=3443&rft.epage=3447&rft.pages=3443-3447&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl301567n&rft_dat=%3Cproquest_cross%3E1762049804%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024646118&rft_id=info:pmid/22725628&rfr_iscdi=true