A Proposed Confinement Modulated Gap Nanowire Transistor Based on a Metal (Tin)
Energy bandgaps are observed to increase with decreasing diameter due to quantum confinement in quasi-one-dimensional semiconductor nanostructures or nanowires. A similar effect is observed in semimetal nanowires for sufficiently small wire diameters: A bandgap is induced, and the semimetal nanowire...
Gespeichert in:
Veröffentlicht in: | Nano letters 2012-05, Vol.12 (5), p.2222-2227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2227 |
---|---|
container_issue | 5 |
container_start_page | 2222 |
container_title | Nano letters |
container_volume | 12 |
creator | Ansari, Lida Fagas, Giorgos Colinge, Jean-Pierre Greer, James C |
description | Energy bandgaps are observed to increase with decreasing diameter due to quantum confinement in quasi-one-dimensional semiconductor nanostructures or nanowires. A similar effect is observed in semimetal nanowires for sufficiently small wire diameters: A bandgap is induced, and the semimetal nanowire becomes a semiconductor. We demonstrate that on the length scale on which the semimetal–semiconductor transition occurs, this enables the use of bandgap engineering to form a field-effect transistor near atomic dimensions and eliminates the need for doping in the transistor’s source, channel, or drain. By removing the requirement to supply free carriers by introducing dopant impurities, quantum confinement allows for a materials engineering to overcome the primary obstacle to fabricating sub-5 nm transistors, enabling aggressive scaling to near atomic limits. |
doi_str_mv | 10.1021/nl2040817 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762049408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-c4e18bd01e1b62392b16e29be6d0f3519f7c98f6cdc915128fc795fdf98e63f83</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gHJRWgPq0n2KznWolVorYd6XrLJBLbsJmuyi_jv3dLak6cZhud9YR6Ebil5oITRR1szkhBO8zM0pmlMokwIdn7aeTJCVyHsCCEiTsklGjGWEpIn6Rht5vjDu9YF0HjhrKksNGA7vHa6r2U3XJeyxe_Suu_KA956aUMVOufxk9xnnMUSr6GTNZ5uKzu7RhdG1gFujnOCPl-et4vXaLVZvi3mq0jGCe8ilQDlpSYUaJmxWLCSZsBECZkmJk6pMLkS3GRKK0FTyrhRuUiNNoJDFhseT9D00Nt699VD6IqmCgrqWlpwfShong1OxGBlQGcHVHkXggdTtL5qpP8pKCn2_oqTv4G9O9b2ZQP6RP4JG4D7AyBVKHau93b48p-iX2widMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762049408</pqid></control><display><type>article</type><title>A Proposed Confinement Modulated Gap Nanowire Transistor Based on a Metal (Tin)</title><source>American Chemical Society Journals</source><creator>Ansari, Lida ; Fagas, Giorgos ; Colinge, Jean-Pierre ; Greer, James C</creator><creatorcontrib>Ansari, Lida ; Fagas, Giorgos ; Colinge, Jean-Pierre ; Greer, James C</creatorcontrib><description>Energy bandgaps are observed to increase with decreasing diameter due to quantum confinement in quasi-one-dimensional semiconductor nanostructures or nanowires. A similar effect is observed in semimetal nanowires for sufficiently small wire diameters: A bandgap is induced, and the semimetal nanowire becomes a semiconductor. We demonstrate that on the length scale on which the semimetal–semiconductor transition occurs, this enables the use of bandgap engineering to form a field-effect transistor near atomic dimensions and eliminates the need for doping in the transistor’s source, channel, or drain. By removing the requirement to supply free carriers by introducing dopant impurities, quantum confinement allows for a materials engineering to overcome the primary obstacle to fabricating sub-5 nm transistors, enabling aggressive scaling to near atomic limits.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl2040817</identifier><identifier>PMID: 22500745</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Channels ; Energy gaps (solid state) ; Metalloids ; Nanostructure ; Nanowires ; Obstacles ; Quantum confinement ; Semiconductor devices ; Semiconductors ; Transistors</subject><ispartof>Nano letters, 2012-05, Vol.12 (5), p.2222-2227</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-c4e18bd01e1b62392b16e29be6d0f3519f7c98f6cdc915128fc795fdf98e63f83</citedby><cites>FETCH-LOGICAL-a348t-c4e18bd01e1b62392b16e29be6d0f3519f7c98f6cdc915128fc795fdf98e63f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl2040817$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl2040817$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22500745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ansari, Lida</creatorcontrib><creatorcontrib>Fagas, Giorgos</creatorcontrib><creatorcontrib>Colinge, Jean-Pierre</creatorcontrib><creatorcontrib>Greer, James C</creatorcontrib><title>A Proposed Confinement Modulated Gap Nanowire Transistor Based on a Metal (Tin)</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Energy bandgaps are observed to increase with decreasing diameter due to quantum confinement in quasi-one-dimensional semiconductor nanostructures or nanowires. A similar effect is observed in semimetal nanowires for sufficiently small wire diameters: A bandgap is induced, and the semimetal nanowire becomes a semiconductor. We demonstrate that on the length scale on which the semimetal–semiconductor transition occurs, this enables the use of bandgap engineering to form a field-effect transistor near atomic dimensions and eliminates the need for doping in the transistor’s source, channel, or drain. By removing the requirement to supply free carriers by introducing dopant impurities, quantum confinement allows for a materials engineering to overcome the primary obstacle to fabricating sub-5 nm transistors, enabling aggressive scaling to near atomic limits.</description><subject>Channels</subject><subject>Energy gaps (solid state)</subject><subject>Metalloids</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Obstacles</subject><subject>Quantum confinement</subject><subject>Semiconductor devices</subject><subject>Semiconductors</subject><subject>Transistors</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMotlYP_gHJRWgPq0n2KznWolVorYd6XrLJBLbsJmuyi_jv3dLak6cZhud9YR6Ebil5oITRR1szkhBO8zM0pmlMokwIdn7aeTJCVyHsCCEiTsklGjGWEpIn6Rht5vjDu9YF0HjhrKksNGA7vHa6r2U3XJeyxe_Suu_KA956aUMVOufxk9xnnMUSr6GTNZ5uKzu7RhdG1gFujnOCPl-et4vXaLVZvi3mq0jGCe8ilQDlpSYUaJmxWLCSZsBECZkmJk6pMLkS3GRKK0FTyrhRuUiNNoJDFhseT9D00Nt699VD6IqmCgrqWlpwfShong1OxGBlQGcHVHkXggdTtL5qpP8pKCn2_oqTv4G9O9b2ZQP6RP4JG4D7AyBVKHau93b48p-iX2widMY</recordid><startdate>20120509</startdate><enddate>20120509</enddate><creator>Ansari, Lida</creator><creator>Fagas, Giorgos</creator><creator>Colinge, Jean-Pierre</creator><creator>Greer, James C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120509</creationdate><title>A Proposed Confinement Modulated Gap Nanowire Transistor Based on a Metal (Tin)</title><author>Ansari, Lida ; Fagas, Giorgos ; Colinge, Jean-Pierre ; Greer, James C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-c4e18bd01e1b62392b16e29be6d0f3519f7c98f6cdc915128fc795fdf98e63f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Channels</topic><topic>Energy gaps (solid state)</topic><topic>Metalloids</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Obstacles</topic><topic>Quantum confinement</topic><topic>Semiconductor devices</topic><topic>Semiconductors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, Lida</creatorcontrib><creatorcontrib>Fagas, Giorgos</creatorcontrib><creatorcontrib>Colinge, Jean-Pierre</creatorcontrib><creatorcontrib>Greer, James C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, Lida</au><au>Fagas, Giorgos</au><au>Colinge, Jean-Pierre</au><au>Greer, James C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Proposed Confinement Modulated Gap Nanowire Transistor Based on a Metal (Tin)</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-05-09</date><risdate>2012</risdate><volume>12</volume><issue>5</issue><spage>2222</spage><epage>2227</epage><pages>2222-2227</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Energy bandgaps are observed to increase with decreasing diameter due to quantum confinement in quasi-one-dimensional semiconductor nanostructures or nanowires. A similar effect is observed in semimetal nanowires for sufficiently small wire diameters: A bandgap is induced, and the semimetal nanowire becomes a semiconductor. We demonstrate that on the length scale on which the semimetal–semiconductor transition occurs, this enables the use of bandgap engineering to form a field-effect transistor near atomic dimensions and eliminates the need for doping in the transistor’s source, channel, or drain. By removing the requirement to supply free carriers by introducing dopant impurities, quantum confinement allows for a materials engineering to overcome the primary obstacle to fabricating sub-5 nm transistors, enabling aggressive scaling to near atomic limits.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>22500745</pmid><doi>10.1021/nl2040817</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-05, Vol.12 (5), p.2222-2227 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762049408 |
source | American Chemical Society Journals |
subjects | Channels Energy gaps (solid state) Metalloids Nanostructure Nanowires Obstacles Quantum confinement Semiconductor devices Semiconductors Transistors |
title | A Proposed Confinement Modulated Gap Nanowire Transistor Based on a Metal (Tin) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Proposed%20Confinement%20Modulated%20Gap%20Nanowire%20Transistor%20Based%20on%20a%20Metal%20(Tin)&rft.jtitle=Nano%20letters&rft.au=Ansari,%20Lida&rft.date=2012-05-09&rft.volume=12&rft.issue=5&rft.spage=2222&rft.epage=2227&rft.pages=2222-2227&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl2040817&rft_dat=%3Cproquest_cross%3E1762049408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762049408&rft_id=info:pmid/22500745&rfr_iscdi=true |