Atom-by-Atom Observation of Grain Boundary Migration in Graphene
Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the samp...
Gespeichert in:
Veröffentlicht in: | Nano letters 2012-06, Vol.12 (6), p.3168-3173 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3173 |
---|---|
container_issue | 6 |
container_start_page | 3168 |
container_title | Nano letters |
container_volume | 12 |
creator | Kurasch, Simon Kotakoski, Jani Lehtinen, Ossi Skákalová, Viera Smet, Jurgen Krill, Carl E Krasheninnikov, Arkady V Kaiser, Ute |
description | Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance. |
doi_str_mv | 10.1021/nl301141g |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020510028</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgipvTg_-A9CLoofryo01zcw6dwmQXPZe0TWZHm8ykFfbfm7E5PQieXnjvw3vki9A5hhsMBN-ahgLGDC8O0BAnFOJUCHK4f2dsgE68XwKAoAkcowEhScIo0CG6G3e2jYt1vKnRvPDKfcqutiayOpo6WZvo3vamkm4dvdQLt52Fbpit3pVRp-hIy8ars10dobfHh9fJUzybT58n41ksGWNdrAmnqQBIBKeK6IqVuihSzkTBINFpmlVcCMoLkXIqscRVobMsZYFlXGcl0BG62u5dOfvRK9_lbe1L1TTSKNv7HPOUABOUiv8pEEgwAMkCvd7S0lnvndL5ytVt-GxAG4fzfbbBXuzW9kWrqr38DjOAyx2QvpSNdtKUtf9xicgEx7-cLH2-tL0zIbg_Dn4BJCqKPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020510028</pqid></control><display><type>article</type><title>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kurasch, Simon ; Kotakoski, Jani ; Lehtinen, Ossi ; Skákalová, Viera ; Smet, Jurgen ; Krill, Carl E ; Krasheninnikov, Arkady V ; Kaiser, Ute</creator><creatorcontrib>Kurasch, Simon ; Kotakoski, Jani ; Lehtinen, Ossi ; Skákalová, Viera ; Smet, Jurgen ; Krill, Carl E ; Krasheninnikov, Arkady V ; Kaiser, Ute</creatorcontrib><description>Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl301141g</identifier><identifier>PMID: 22554303</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Boundaries ; Computer Simulation ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Curvature ; Diffusion ; Diffusion in nanoscale solids ; Diffusion in solids ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Grains ; Graphene ; Graphite - chemistry ; Materials science ; Mathematical analysis ; Migration ; Models, Chemical ; Models, Molecular ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Physics ; Specific materials ; Three dimensional ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Nano letters, 2012-06, Vol.12 (6), p.3168-3173</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</citedby><cites>FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl301141g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl301141g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25989713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22554303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurasch, Simon</creatorcontrib><creatorcontrib>Kotakoski, Jani</creatorcontrib><creatorcontrib>Lehtinen, Ossi</creatorcontrib><creatorcontrib>Skákalová, Viera</creatorcontrib><creatorcontrib>Smet, Jurgen</creatorcontrib><creatorcontrib>Krill, Carl E</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><title>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.</description><subject>Boundaries</subject><subject>Computer Simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Curvature</subject><subject>Diffusion</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Grains</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Three dimensional</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M9LwzAUB_AgipvTg_-A9CLoofryo01zcw6dwmQXPZe0TWZHm8ykFfbfm7E5PQieXnjvw3vki9A5hhsMBN-ahgLGDC8O0BAnFOJUCHK4f2dsgE68XwKAoAkcowEhScIo0CG6G3e2jYt1vKnRvPDKfcqutiayOpo6WZvo3vamkm4dvdQLt52Fbpit3pVRp-hIy8ars10dobfHh9fJUzybT58n41ksGWNdrAmnqQBIBKeK6IqVuihSzkTBINFpmlVcCMoLkXIqscRVobMsZYFlXGcl0BG62u5dOfvRK9_lbe1L1TTSKNv7HPOUABOUiv8pEEgwAMkCvd7S0lnvndL5ytVt-GxAG4fzfbbBXuzW9kWrqr38DjOAyx2QvpSNdtKUtf9xicgEx7-cLH2-tL0zIbg_Dn4BJCqKPg</recordid><startdate>20120613</startdate><enddate>20120613</enddate><creator>Kurasch, Simon</creator><creator>Kotakoski, Jani</creator><creator>Lehtinen, Ossi</creator><creator>Skákalová, Viera</creator><creator>Smet, Jurgen</creator><creator>Krill, Carl E</creator><creator>Krasheninnikov, Arkady V</creator><creator>Kaiser, Ute</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120613</creationdate><title>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</title><author>Kurasch, Simon ; Kotakoski, Jani ; Lehtinen, Ossi ; Skákalová, Viera ; Smet, Jurgen ; Krill, Carl E ; Krasheninnikov, Arkady V ; Kaiser, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundaries</topic><topic>Computer Simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Curvature</topic><topic>Diffusion</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Grains</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Three dimensional</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurasch, Simon</creatorcontrib><creatorcontrib>Kotakoski, Jani</creatorcontrib><creatorcontrib>Lehtinen, Ossi</creatorcontrib><creatorcontrib>Skákalová, Viera</creatorcontrib><creatorcontrib>Smet, Jurgen</creatorcontrib><creatorcontrib>Krill, Carl E</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurasch, Simon</au><au>Kotakoski, Jani</au><au>Lehtinen, Ossi</au><au>Skákalová, Viera</au><au>Smet, Jurgen</au><au>Krill, Carl E</au><au>Krasheninnikov, Arkady V</au><au>Kaiser, Ute</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-06-13</date><risdate>2012</risdate><volume>12</volume><issue>6</issue><spage>3168</spage><epage>3173</epage><pages>3168-3173</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22554303</pmid><doi>10.1021/nl301141g</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2012-06, Vol.12 (6), p.3168-3173 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1762049339 |
source | MEDLINE; ACS Publications |
subjects | Boundaries Computer Simulation Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Curvature Diffusion Diffusion in nanoscale solids Diffusion in solids Exact sciences and technology Fullerenes and related materials diamonds, graphite Grains Graphene Graphite - chemistry Materials science Mathematical analysis Migration Models, Chemical Models, Molecular Nanostructure Nanostructures - chemistry Nanostructures - ultrastructure Particle Size Physics Specific materials Three dimensional Transport properties of condensed matter (nonelectronic) |
title | Atom-by-Atom Observation of Grain Boundary Migration in Graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atom-by-Atom%20Observation%20of%20Grain%20Boundary%20Migration%20in%20Graphene&rft.jtitle=Nano%20letters&rft.au=Kurasch,%20Simon&rft.date=2012-06-13&rft.volume=12&rft.issue=6&rft.spage=3168&rft.epage=3173&rft.pages=3168-3173&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl301141g&rft_dat=%3Cproquest_cross%3E1020510028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020510028&rft_id=info:pmid/22554303&rfr_iscdi=true |