Atom-by-Atom Observation of Grain Boundary Migration in Graphene

Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the samp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2012-06, Vol.12 (6), p.3168-3173
Hauptverfasser: Kurasch, Simon, Kotakoski, Jani, Lehtinen, Ossi, Skákalová, Viera, Smet, Jurgen, Krill, Carl E, Krasheninnikov, Arkady V, Kaiser, Ute
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3173
container_issue 6
container_start_page 3168
container_title Nano letters
container_volume 12
creator Kurasch, Simon
Kotakoski, Jani
Lehtinen, Ossi
Skákalová, Viera
Smet, Jurgen
Krill, Carl E
Krasheninnikov, Arkady V
Kaiser, Ute
description Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.
doi_str_mv 10.1021/nl301141g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1762049339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020510028</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</originalsourceid><addsrcrecordid>eNqF0M9LwzAUB_AgipvTg_-A9CLoofryo01zcw6dwmQXPZe0TWZHm8ykFfbfm7E5PQieXnjvw3vki9A5hhsMBN-ahgLGDC8O0BAnFOJUCHK4f2dsgE68XwKAoAkcowEhScIo0CG6G3e2jYt1vKnRvPDKfcqutiayOpo6WZvo3vamkm4dvdQLt52Fbpit3pVRp-hIy8ars10dobfHh9fJUzybT58n41ksGWNdrAmnqQBIBKeK6IqVuihSzkTBINFpmlVcCMoLkXIqscRVobMsZYFlXGcl0BG62u5dOfvRK9_lbe1L1TTSKNv7HPOUABOUiv8pEEgwAMkCvd7S0lnvndL5ytVt-GxAG4fzfbbBXuzW9kWrqr38DjOAyx2QvpSNdtKUtf9xicgEx7-cLH2-tL0zIbg_Dn4BJCqKPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020510028</pqid></control><display><type>article</type><title>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kurasch, Simon ; Kotakoski, Jani ; Lehtinen, Ossi ; Skákalová, Viera ; Smet, Jurgen ; Krill, Carl E ; Krasheninnikov, Arkady V ; Kaiser, Ute</creator><creatorcontrib>Kurasch, Simon ; Kotakoski, Jani ; Lehtinen, Ossi ; Skákalová, Viera ; Smet, Jurgen ; Krill, Carl E ; Krasheninnikov, Arkady V ; Kaiser, Ute</creatorcontrib><description>Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl301141g</identifier><identifier>PMID: 22554303</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Boundaries ; Computer Simulation ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Curvature ; Diffusion ; Diffusion in nanoscale solids ; Diffusion in solids ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Grains ; Graphene ; Graphite - chemistry ; Materials science ; Mathematical analysis ; Migration ; Models, Chemical ; Models, Molecular ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Physics ; Specific materials ; Three dimensional ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>Nano letters, 2012-06, Vol.12 (6), p.3168-3173</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</citedby><cites>FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl301141g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl301141g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25989713$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22554303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurasch, Simon</creatorcontrib><creatorcontrib>Kotakoski, Jani</creatorcontrib><creatorcontrib>Lehtinen, Ossi</creatorcontrib><creatorcontrib>Skákalová, Viera</creatorcontrib><creatorcontrib>Smet, Jurgen</creatorcontrib><creatorcontrib>Krill, Carl E</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><title>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.</description><subject>Boundaries</subject><subject>Computer Simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Curvature</subject><subject>Diffusion</subject><subject>Diffusion in nanoscale solids</subject><subject>Diffusion in solids</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Grains</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Migration</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Three dimensional</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M9LwzAUB_AgipvTg_-A9CLoofryo01zcw6dwmQXPZe0TWZHm8ykFfbfm7E5PQieXnjvw3vki9A5hhsMBN-ahgLGDC8O0BAnFOJUCHK4f2dsgE68XwKAoAkcowEhScIo0CG6G3e2jYt1vKnRvPDKfcqutiayOpo6WZvo3vamkm4dvdQLt52Fbpit3pVRp-hIy8ars10dobfHh9fJUzybT58n41ksGWNdrAmnqQBIBKeK6IqVuihSzkTBINFpmlVcCMoLkXIqscRVobMsZYFlXGcl0BG62u5dOfvRK9_lbe1L1TTSKNv7HPOUABOUiv8pEEgwAMkCvd7S0lnvndL5ytVt-GxAG4fzfbbBXuzW9kWrqr38DjOAyx2QvpSNdtKUtf9xicgEx7-cLH2-tL0zIbg_Dn4BJCqKPg</recordid><startdate>20120613</startdate><enddate>20120613</enddate><creator>Kurasch, Simon</creator><creator>Kotakoski, Jani</creator><creator>Lehtinen, Ossi</creator><creator>Skákalová, Viera</creator><creator>Smet, Jurgen</creator><creator>Krill, Carl E</creator><creator>Krasheninnikov, Arkady V</creator><creator>Kaiser, Ute</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120613</creationdate><title>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</title><author>Kurasch, Simon ; Kotakoski, Jani ; Lehtinen, Ossi ; Skákalová, Viera ; Smet, Jurgen ; Krill, Carl E ; Krasheninnikov, Arkady V ; Kaiser, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-f27369005973e2fd4cfbb6749b405f668d79937b9673a1a1dbf88644cf87f8c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boundaries</topic><topic>Computer Simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Curvature</topic><topic>Diffusion</topic><topic>Diffusion in nanoscale solids</topic><topic>Diffusion in solids</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Grains</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Migration</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Three dimensional</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurasch, Simon</creatorcontrib><creatorcontrib>Kotakoski, Jani</creatorcontrib><creatorcontrib>Lehtinen, Ossi</creatorcontrib><creatorcontrib>Skákalová, Viera</creatorcontrib><creatorcontrib>Smet, Jurgen</creatorcontrib><creatorcontrib>Krill, Carl E</creatorcontrib><creatorcontrib>Krasheninnikov, Arkady V</creatorcontrib><creatorcontrib>Kaiser, Ute</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurasch, Simon</au><au>Kotakoski, Jani</au><au>Lehtinen, Ossi</au><au>Skákalová, Viera</au><au>Smet, Jurgen</au><au>Krill, Carl E</au><au>Krasheninnikov, Arkady V</au><au>Kaiser, Ute</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atom-by-Atom Observation of Grain Boundary Migration in Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2012-06-13</date><risdate>2012</risdate><volume>12</volume><issue>6</issue><spage>3168</spage><epage>3173</epage><pages>3168-3173</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Grain boundary (GB) migration in polycrystalline solids is a materials science manifestation of survival of the fittest, with adjacent grains competing to add atoms to their outer surfaces at each other’s expense. This process is thermodynamically favored when it lowers the total GB area in the sample, thereby reducing the excess free energy contributed by the boundaries. In this picture, a curved boundary is expected to migrate toward its center of curvature with a velocity proportional to the local radius of boundary curvature (R). Investigating the underlying mechanism of boundary migration in a 3D material, however, has been reserved for computer simulation or analytical theory, as capturing the dynamics of individual atoms in the core region of a GB is well beyond the spatial and temporal resolution limits of current characterization techniques. Here, we similarly overcome the conventional experimental limits by investigating a 2D material, polycrystalline graphene, in an aberration-corrected transmission electron microscope, exploiting the energy of the imaging electrons to stimulate individual bond rotations in the GB core region. The resulting morphological changes are followed in situ, atom-by-atom, revealing configurational fluctuations that take on a time-averaged preferential direction only in the presence of significant boundary curvature, as confirmed by Monte Carlo simulations. Remarkably, in the extreme case of a small graphene grain enclosed within a larger one, we follow its shrinkage to the point of complete disappearance.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22554303</pmid><doi>10.1021/nl301141g</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2012-06, Vol.12 (6), p.3168-3173
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1762049339
source MEDLINE; ACS Publications
subjects Boundaries
Computer Simulation
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Curvature
Diffusion
Diffusion in nanoscale solids
Diffusion in solids
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Grains
Graphene
Graphite - chemistry
Materials science
Mathematical analysis
Migration
Models, Chemical
Models, Molecular
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Physics
Specific materials
Three dimensional
Transport properties of condensed matter (nonelectronic)
title Atom-by-Atom Observation of Grain Boundary Migration in Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atom-by-Atom%20Observation%20of%20Grain%20Boundary%20Migration%20in%20Graphene&rft.jtitle=Nano%20letters&rft.au=Kurasch,%20Simon&rft.date=2012-06-13&rft.volume=12&rft.issue=6&rft.spage=3168&rft.epage=3173&rft.pages=3168-3173&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl301141g&rft_dat=%3Cproquest_cross%3E1020510028%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1020510028&rft_id=info:pmid/22554303&rfr_iscdi=true