Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals

We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2016-01, Vol.8 (3), p.2280-2286
Hauptverfasser: Yoon, Joonseok, Kim, Howon, Chen, Xian, Tamura, Nobumichi, Mun, Bongjin Simon, Park, Changwoo, Ju, Honglyoul
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2286
container_issue 3
container_start_page 2280
container_title ACS applied materials & interfaces
container_volume 8
creator Yoon, Joonseok
Kim, Howon
Chen, Xian
Tamura, Nobumichi
Mun, Bongjin Simon
Park, Changwoo
Ju, Honglyoul
description We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 102 to 1.7 × 104 μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices.
doi_str_mv 10.1021/acsami.5b11144
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1761079287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1761079287</sourcerecordid><originalsourceid>FETCH-LOGICAL-a352t-cf624600e9b101974d09d6a85470b4d09880e47b8a687ec21271f09a8879c3b43</originalsourceid><addsrcrecordid>eNo9kElPwzAQRi0EoqVw5YhyREgpHsfxckQRm1RUBIWr5SQOTZXYwU4O_fektHD6ZnkajR5Cl4DngAnc6iLotp6nOQBQeoSmICmNBUnJ8X9N6QSdhbDBmCUEp6doQhiHhHExRW-Zs713TVPbr6hfm2hl2s543Q_eRNqW0XtnTBm56nf5utZhRLy2oe5rZ3fzzyWJXurCu8JvQ6-bcI5OqjHMxSFn6OPhfpU9xYvl43N2t4h1kpI-LipGKMPYyBwwSE5LLEumRUo5zneNENhQngvNBDcFAcKhwlILwWWR5DSZoev93c6778GEXrV1KEzTaGvcEBRwBphLIviIXh3QIW9NqTpft9pv1Z-HEbjZA6NPtXGDt-PnCrDaSVZ7yeogOfkB1_FsWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1761079287</pqid></control><display><type>article</type><title>Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals</title><source>ACS Publications</source><creator>Yoon, Joonseok ; Kim, Howon ; Chen, Xian ; Tamura, Nobumichi ; Mun, Bongjin Simon ; Park, Changwoo ; Ju, Honglyoul</creator><creatorcontrib>Yoon, Joonseok ; Kim, Howon ; Chen, Xian ; Tamura, Nobumichi ; Mun, Bongjin Simon ; Park, Changwoo ; Ju, Honglyoul</creatorcontrib><description>We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 102 to 1.7 × 104 μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b11144</identifier><identifier>PMID: 26713678</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-01, Vol.8 (3), p.2280-2286</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b11144$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b11144$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26713678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Joonseok</creatorcontrib><creatorcontrib>Kim, Howon</creatorcontrib><creatorcontrib>Chen, Xian</creatorcontrib><creatorcontrib>Tamura, Nobumichi</creatorcontrib><creatorcontrib>Mun, Bongjin Simon</creatorcontrib><creatorcontrib>Park, Changwoo</creatorcontrib><creatorcontrib>Ju, Honglyoul</creatorcontrib><title>Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 102 to 1.7 × 104 μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kElPwzAQRi0EoqVw5YhyREgpHsfxckQRm1RUBIWr5SQOTZXYwU4O_fektHD6ZnkajR5Cl4DngAnc6iLotp6nOQBQeoSmICmNBUnJ8X9N6QSdhbDBmCUEp6doQhiHhHExRW-Zs713TVPbr6hfm2hl2s543Q_eRNqW0XtnTBm56nf5utZhRLy2oe5rZ3fzzyWJXurCu8JvQ6-bcI5OqjHMxSFn6OPhfpU9xYvl43N2t4h1kpI-LipGKMPYyBwwSE5LLEumRUo5zneNENhQngvNBDcFAcKhwlILwWWR5DSZoev93c6778GEXrV1KEzTaGvcEBRwBphLIviIXh3QIW9NqTpft9pv1Z-HEbjZA6NPtXGDt-PnCrDaSVZ7yeogOfkB1_FsWw</recordid><startdate>20160127</startdate><enddate>20160127</enddate><creator>Yoon, Joonseok</creator><creator>Kim, Howon</creator><creator>Chen, Xian</creator><creator>Tamura, Nobumichi</creator><creator>Mun, Bongjin Simon</creator><creator>Park, Changwoo</creator><creator>Ju, Honglyoul</creator><general>American Chemical Society</general><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20160127</creationdate><title>Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals</title><author>Yoon, Joonseok ; Kim, Howon ; Chen, Xian ; Tamura, Nobumichi ; Mun, Bongjin Simon ; Park, Changwoo ; Ju, Honglyoul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a352t-cf624600e9b101974d09d6a85470b4d09880e47b8a687ec21271f09a8879c3b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Joonseok</creatorcontrib><creatorcontrib>Kim, Howon</creatorcontrib><creatorcontrib>Chen, Xian</creatorcontrib><creatorcontrib>Tamura, Nobumichi</creatorcontrib><creatorcontrib>Mun, Bongjin Simon</creatorcontrib><creatorcontrib>Park, Changwoo</creatorcontrib><creatorcontrib>Ju, Honglyoul</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Joonseok</au><au>Kim, Howon</au><au>Chen, Xian</au><au>Tamura, Nobumichi</au><au>Mun, Bongjin Simon</au><au>Park, Changwoo</au><au>Ju, Honglyoul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-01-27</date><risdate>2016</risdate><volume>8</volume><issue>3</issue><spage>2280</spage><epage>2286</epage><pages>2280-2286</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We investigated the control of two important parameters of vanadium dioxide (VO2) microcrystals, the phase transition temperature and speed, by varying microcrystal width. By using the reflectivity change between insulating and metallic phases, phase transition temperature is measured by optical microscopy. As the width of square cylinder-shaped microcrystals decreases from ∼70 to ∼1 μm, the phase transition temperature (67 °C for bulk) varied as much as 26.1 °C (19.7 °C) during heating (cooling). In addition, the propagation speed of phase boundary in the microcrystal, i.e., phase transition speed, is monitored at the onset of phase transition by using the high-speed resistance measurement. The phase transition speed increases from 4.6 × 102 to 1.7 × 104 μm/s as the width decreases from ∼50 to ∼2 μm. While the statistical description for a heterogeneous nucleation process explains the size dependence on phase transition temperature of VO2, the increase of effective thermal exchange process is responsible for the enhancement of phase transition speed of small VO2 microcrystals. Our findings not only enhance the understanding of VO2 intrinsic properties but also contribute to the development of innovative electronic devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26713678</pmid><doi>10.1021/acsami.5b11144</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-01, Vol.8 (3), p.2280-2286
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1761079287
source ACS Publications
title Controlling the Temperature and Speed of the Phase Transition of VO2 Microcrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20the%20Temperature%20and%20Speed%20of%20the%20Phase%20Transition%20of%20VO2%20Microcrystals&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yoon,%20Joonseok&rft.date=2016-01-27&rft.volume=8&rft.issue=3&rft.spage=2280&rft.epage=2286&rft.pages=2280-2286&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b11144&rft_dat=%3Cproquest_pubme%3E1761079287%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1761079287&rft_id=info:pmid/26713678&rfr_iscdi=true