Alternative Conformations of Cytochrome c: Structure, Function, and Detection
Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxi...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2016-01, Vol.55 (3), p.407-428 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 3 |
container_start_page | 407 |
container_title | Biochemistry (Easton) |
container_volume | 55 |
creator | Hannibal, Luciana Tomasina, Florencia Capdevila, Daiana A Demicheli, Verónica Tórtora, Verónica Alvarez-Paggi, Damián Jemmerson, Ronald Murgida, Daniel H Radi, Rafael |
description | Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis. |
doi_str_mv | 10.1021/acs.biochem.5b01385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1760924093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760924093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a456t-ede25912fdba9d9318265ed677a62463f14d3a950fa3b41379781b65320418923</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMobk7_AkF69LBu-Z3Gm1SnwsSDeg5pm2JH28wkFfbfm7nq0dPHC8_7fvAAcIngAkGMlrr0i6Kx5YfpFqyAiGTsCEwRwzClUrJjMIUQ8hRLDifgzPtNjBQKegommAsck5iC59s2GNfr0HyZJLd9bV0Xg-19Yusk34W472xnkvImeQ1uKMPgzDxZDX25p-aJ7qvkzgTzE8_BSa1bby7GOwPvq_u3_DFdvzw85bfrVFPGQ2oqg5lEuK4KLStJUIY5MxUXQnNMOakRrYiWDNaaFBQRIUWGCs4IhhRlEpMZuD7sbp39HIwPqmt8adpW98YOXiHBocQUShJRckBLZ713plZb13Ta7RSCau9RRY9q9KhGj7F1NT4Yis5Uf51fcRFYHoB9e2OHqLD1_05-AxXegAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760924093</pqid></control><display><type>article</type><title>Alternative Conformations of Cytochrome c: Structure, Function, and Detection</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hannibal, Luciana ; Tomasina, Florencia ; Capdevila, Daiana A ; Demicheli, Verónica ; Tórtora, Verónica ; Alvarez-Paggi, Damián ; Jemmerson, Ronald ; Murgida, Daniel H ; Radi, Rafael</creator><creatorcontrib>Hannibal, Luciana ; Tomasina, Florencia ; Capdevila, Daiana A ; Demicheli, Verónica ; Tórtora, Verónica ; Alvarez-Paggi, Damián ; Jemmerson, Ronald ; Murgida, Daniel H ; Radi, Rafael</creatorcontrib><description>Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.5b01385</identifier><identifier>PMID: 26720007</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cardiolipins - chemistry ; Cytochromes c - chemistry ; Cytochromes c - metabolism ; Electricity ; Fungal Proteins - chemistry ; Fungal Proteins - metabolism ; Humans ; Intracellular Space - metabolism ; Phospholipids - chemistry ; Plant Proteins - chemistry ; Plant Proteins - metabolism ; Protein Conformation ; Protein Folding ; Protein Processing, Post-Translational ; Protein Transport</subject><ispartof>Biochemistry (Easton), 2016-01, Vol.55 (3), p.407-428</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a456t-ede25912fdba9d9318265ed677a62463f14d3a950fa3b41379781b65320418923</citedby><cites>FETCH-LOGICAL-a456t-ede25912fdba9d9318265ed677a62463f14d3a950fa3b41379781b65320418923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.5b01385$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.5b01385$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26720007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannibal, Luciana</creatorcontrib><creatorcontrib>Tomasina, Florencia</creatorcontrib><creatorcontrib>Capdevila, Daiana A</creatorcontrib><creatorcontrib>Demicheli, Verónica</creatorcontrib><creatorcontrib>Tórtora, Verónica</creatorcontrib><creatorcontrib>Alvarez-Paggi, Damián</creatorcontrib><creatorcontrib>Jemmerson, Ronald</creatorcontrib><creatorcontrib>Murgida, Daniel H</creatorcontrib><creatorcontrib>Radi, Rafael</creatorcontrib><title>Alternative Conformations of Cytochrome c: Structure, Function, and Detection</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.</description><subject>Animals</subject><subject>Cardiolipins - chemistry</subject><subject>Cytochromes c - chemistry</subject><subject>Cytochromes c - metabolism</subject><subject>Electricity</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - metabolism</subject><subject>Humans</subject><subject>Intracellular Space - metabolism</subject><subject>Phospholipids - chemistry</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - metabolism</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Processing, Post-Translational</subject><subject>Protein Transport</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9LwzAYhoMobk7_AkF69LBu-Z3Gm1SnwsSDeg5pm2JH28wkFfbfm7nq0dPHC8_7fvAAcIngAkGMlrr0i6Kx5YfpFqyAiGTsCEwRwzClUrJjMIUQ8hRLDifgzPtNjBQKegommAsck5iC59s2GNfr0HyZJLd9bV0Xg-19Yusk34W472xnkvImeQ1uKMPgzDxZDX25p-aJ7qvkzgTzE8_BSa1bby7GOwPvq_u3_DFdvzw85bfrVFPGQ2oqg5lEuK4KLStJUIY5MxUXQnNMOakRrYiWDNaaFBQRIUWGCs4IhhRlEpMZuD7sbp39HIwPqmt8adpW98YOXiHBocQUShJRckBLZ713plZb13Ta7RSCau9RRY9q9KhGj7F1NT4Yis5Uf51fcRFYHoB9e2OHqLD1_05-AxXegAE</recordid><startdate>20160126</startdate><enddate>20160126</enddate><creator>Hannibal, Luciana</creator><creator>Tomasina, Florencia</creator><creator>Capdevila, Daiana A</creator><creator>Demicheli, Verónica</creator><creator>Tórtora, Verónica</creator><creator>Alvarez-Paggi, Damián</creator><creator>Jemmerson, Ronald</creator><creator>Murgida, Daniel H</creator><creator>Radi, Rafael</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160126</creationdate><title>Alternative Conformations of Cytochrome c: Structure, Function, and Detection</title><author>Hannibal, Luciana ; Tomasina, Florencia ; Capdevila, Daiana A ; Demicheli, Verónica ; Tórtora, Verónica ; Alvarez-Paggi, Damián ; Jemmerson, Ronald ; Murgida, Daniel H ; Radi, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a456t-ede25912fdba9d9318265ed677a62463f14d3a950fa3b41379781b65320418923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Cardiolipins - chemistry</topic><topic>Cytochromes c - chemistry</topic><topic>Cytochromes c - metabolism</topic><topic>Electricity</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - metabolism</topic><topic>Humans</topic><topic>Intracellular Space - metabolism</topic><topic>Phospholipids - chemistry</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - metabolism</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Processing, Post-Translational</topic><topic>Protein Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannibal, Luciana</creatorcontrib><creatorcontrib>Tomasina, Florencia</creatorcontrib><creatorcontrib>Capdevila, Daiana A</creatorcontrib><creatorcontrib>Demicheli, Verónica</creatorcontrib><creatorcontrib>Tórtora, Verónica</creatorcontrib><creatorcontrib>Alvarez-Paggi, Damián</creatorcontrib><creatorcontrib>Jemmerson, Ronald</creatorcontrib><creatorcontrib>Murgida, Daniel H</creatorcontrib><creatorcontrib>Radi, Rafael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannibal, Luciana</au><au>Tomasina, Florencia</au><au>Capdevila, Daiana A</au><au>Demicheli, Verónica</au><au>Tórtora, Verónica</au><au>Alvarez-Paggi, Damián</au><au>Jemmerson, Ronald</au><au>Murgida, Daniel H</au><au>Radi, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alternative Conformations of Cytochrome c: Structure, Function, and Detection</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2016-01-26</date><risdate>2016</risdate><volume>55</volume><issue>3</issue><spage>407</spage><epage>428</epage><pages>407-428</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26720007</pmid><doi>10.1021/acs.biochem.5b01385</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2016-01, Vol.55 (3), p.407-428 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_1760924093 |
source | MEDLINE; American Chemical Society Journals |
subjects | Animals Cardiolipins - chemistry Cytochromes c - chemistry Cytochromes c - metabolism Electricity Fungal Proteins - chemistry Fungal Proteins - metabolism Humans Intracellular Space - metabolism Phospholipids - chemistry Plant Proteins - chemistry Plant Proteins - metabolism Protein Conformation Protein Folding Protein Processing, Post-Translational Protein Transport |
title | Alternative Conformations of Cytochrome c: Structure, Function, and Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T18%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alternative%20Conformations%20of%20Cytochrome%20c:%20Structure,%20Function,%20and%20Detection&rft.jtitle=Biochemistry%20(Easton)&rft.au=Hannibal,%20Luciana&rft.date=2016-01-26&rft.volume=55&rft.issue=3&rft.spage=407&rft.epage=428&rft.pages=407-428&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.5b01385&rft_dat=%3Cproquest_cross%3E1760924093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760924093&rft_id=info:pmid/26720007&rfr_iscdi=true |