Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism

Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health‐promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2016, Vol.85 (1), p.107-119
Hauptverfasser: Llorente, Briardo, D'Andrea, Lucio, Ruiz‐Sola, M. Aguila, Botterweg, Esther, Pulido, Pablo, Andilla, Jordi, Loza‐Alvarez, Pablo, Rodriguez‐Concepcion, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue 1
container_start_page 107
container_title The Plant journal : for cell and molecular biology
container_volume 85
creator Llorente, Briardo
D'Andrea, Lucio
Ruiz‐Sola, M. Aguila
Botterweg, Esther
Pulido, Pablo
Andilla, Jordi
Loza‐Alvarez, Pablo
Rodriguez‐Concepcion, Manuel
description Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health‐promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome‐interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF‐mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self‐shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co‐opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid‐enriched fruits.
doi_str_mv 10.1111/tpj.13094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1760901587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760901587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4824-5ba0fc2fe4667a921320eeb04b1fd38684012495ac31e4b400d01566206645a73</originalsourceid><addsrcrecordid>eNp10ctu1DAUBmALUdGhsOAFwBIbWKQ9vsRJlqji0qoSSEwldpaTnMx4lNjBdoRmxyPwjDwJnk7LAgnLkjff-WX7J-QFg3OW10Wad-dMQCMfkRUTqiwEE98ekxU0CopKMn5Knsa4A2CVUPIJOeVKyVpKtSLz2k8meTqExSbameATOm972lof9y5tMdpI8zb9bokJe5qx6dJiRhrsjM66DZ2D3wSM0XpH2z01dLSbbfr981ePWfToEp2w2xpn4_SMnAxmjPj8_jwjtx_ery8_FTefP15dvrspOllzWZStgaHjA0qlKtNwJjggtiBbNvSiVrUExmVTmk4wlK0E6IGVSnHITytNJc7Im2Nuvtz3BWPSk40djqNx6JeoWaWgySP1gb7-h-78Ely-XVZl1TQ1yIN6e1Rd8DEGHPQc7GTCXjPQhxp0rkHf1ZDty_vEpZ2w_ysf_j2DiyP4YUfc_z9Jr79cP0S-Ok4MxmuzCTbq268cmMqtQsmaWvwBsBib-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757998047</pqid></control><display><type>article</type><title>Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism</title><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Llorente, Briardo ; D'Andrea, Lucio ; Ruiz‐Sola, M. Aguila ; Botterweg, Esther ; Pulido, Pablo ; Andilla, Jordi ; Loza‐Alvarez, Pablo ; Rodriguez‐Concepcion, Manuel</creator><creatorcontrib>Llorente, Briardo ; D'Andrea, Lucio ; Ruiz‐Sola, M. Aguila ; Botterweg, Esther ; Pulido, Pablo ; Andilla, Jordi ; Loza‐Alvarez, Pablo ; Rodriguez‐Concepcion, Manuel</creatorcontrib><description>Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health‐promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome‐interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF‐mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self‐shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co‐opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid‐enriched fruits.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13094</identifier><identifier>PMID: 26648446</identifier><language>eng</language><publisher>England: Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</publisher><subject>animals ; Arabidopsis thaliana ; Biosynthesis ; canopy ; carotenoid ; Carotenoids ; Carotenoids - metabolism ; Chlorophyll ; Chlorophyll - metabolism ; color ; Environment ; Ethylenes - metabolism ; fruit ; Fruit - genetics ; Fruit - physiology ; Fruit - radiation effects ; fruits ; Gene expression ; Gene Expression Regulation, Plant - radiation effects ; genes ; health promotion ; Light ; Lycopersicon esculentum - genetics ; Lycopersicon esculentum - physiology ; Lycopersicon esculentum - radiation effects ; Phytochrome - metabolism ; phytochrome‐interacting factor ; pigments ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified ; proteins ; ripening ; seed dispersal ; shade ; signal transduction ; Signal Transduction - radiation effects ; Solanum lycopersicum ; solar radiation ; temperature ; Terpenes - metabolism ; tomato ; tomatoes ; transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>The Plant journal : for cell and molecular biology, 2016, Vol.85 (1), p.107-119</ispartof><rights>2015 The Authors The Plant Journal © 2015 John Wiley &amp; Sons Ltd</rights><rights>2015 The Authors The Plant Journal © 2015 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4824-5ba0fc2fe4667a921320eeb04b1fd38684012495ac31e4b400d01566206645a73</citedby><cites>FETCH-LOGICAL-c4824-5ba0fc2fe4667a921320eeb04b1fd38684012495ac31e4b400d01566206645a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13094$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13094$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,4028,27932,27933,27934,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26648446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorente, Briardo</creatorcontrib><creatorcontrib>D'Andrea, Lucio</creatorcontrib><creatorcontrib>Ruiz‐Sola, M. Aguila</creatorcontrib><creatorcontrib>Botterweg, Esther</creatorcontrib><creatorcontrib>Pulido, Pablo</creatorcontrib><creatorcontrib>Andilla, Jordi</creatorcontrib><creatorcontrib>Loza‐Alvarez, Pablo</creatorcontrib><creatorcontrib>Rodriguez‐Concepcion, Manuel</creatorcontrib><title>Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health‐promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome‐interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF‐mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self‐shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co‐opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid‐enriched fruits.</description><subject>animals</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>canopy</subject><subject>carotenoid</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Chlorophyll</subject><subject>Chlorophyll - metabolism</subject><subject>color</subject><subject>Environment</subject><subject>Ethylenes - metabolism</subject><subject>fruit</subject><subject>Fruit - genetics</subject><subject>Fruit - physiology</subject><subject>Fruit - radiation effects</subject><subject>fruits</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - radiation effects</subject><subject>genes</subject><subject>health promotion</subject><subject>Light</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Lycopersicon esculentum - physiology</subject><subject>Lycopersicon esculentum - radiation effects</subject><subject>Phytochrome - metabolism</subject><subject>phytochrome‐interacting factor</subject><subject>pigments</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>proteins</subject><subject>ripening</subject><subject>seed dispersal</subject><subject>shade</subject><subject>signal transduction</subject><subject>Signal Transduction - radiation effects</subject><subject>Solanum lycopersicum</subject><subject>solar radiation</subject><subject>temperature</subject><subject>Terpenes - metabolism</subject><subject>tomato</subject><subject>tomatoes</subject><subject>transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10ctu1DAUBmALUdGhsOAFwBIbWKQ9vsRJlqji0qoSSEwldpaTnMx4lNjBdoRmxyPwjDwJnk7LAgnLkjff-WX7J-QFg3OW10Wad-dMQCMfkRUTqiwEE98ekxU0CopKMn5Knsa4A2CVUPIJOeVKyVpKtSLz2k8meTqExSbameATOm972lof9y5tMdpI8zb9bokJe5qx6dJiRhrsjM66DZ2D3wSM0XpH2z01dLSbbfr981ePWfToEp2w2xpn4_SMnAxmjPj8_jwjtx_ery8_FTefP15dvrspOllzWZStgaHjA0qlKtNwJjggtiBbNvSiVrUExmVTmk4wlK0E6IGVSnHITytNJc7Im2Nuvtz3BWPSk40djqNx6JeoWaWgySP1gb7-h-78Ely-XVZl1TQ1yIN6e1Rd8DEGHPQc7GTCXjPQhxp0rkHf1ZDty_vEpZ2w_ysf_j2DiyP4YUfc_z9Jr79cP0S-Ok4MxmuzCTbq268cmMqtQsmaWvwBsBib-g</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Llorente, Briardo</creator><creator>D'Andrea, Lucio</creator><creator>Ruiz‐Sola, M. Aguila</creator><creator>Botterweg, Esther</creator><creator>Pulido, Pablo</creator><creator>Andilla, Jordi</creator><creator>Loza‐Alvarez, Pablo</creator><creator>Rodriguez‐Concepcion, Manuel</creator><general>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2016</creationdate><title>Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism</title><author>Llorente, Briardo ; D'Andrea, Lucio ; Ruiz‐Sola, M. Aguila ; Botterweg, Esther ; Pulido, Pablo ; Andilla, Jordi ; Loza‐Alvarez, Pablo ; Rodriguez‐Concepcion, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4824-5ba0fc2fe4667a921320eeb04b1fd38684012495ac31e4b400d01566206645a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>animals</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>canopy</topic><topic>carotenoid</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Chlorophyll</topic><topic>Chlorophyll - metabolism</topic><topic>color</topic><topic>Environment</topic><topic>Ethylenes - metabolism</topic><topic>fruit</topic><topic>Fruit - genetics</topic><topic>Fruit - physiology</topic><topic>Fruit - radiation effects</topic><topic>fruits</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - radiation effects</topic><topic>genes</topic><topic>health promotion</topic><topic>Light</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Lycopersicon esculentum - physiology</topic><topic>Lycopersicon esculentum - radiation effects</topic><topic>Phytochrome - metabolism</topic><topic>phytochrome‐interacting factor</topic><topic>pigments</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>proteins</topic><topic>ripening</topic><topic>seed dispersal</topic><topic>shade</topic><topic>signal transduction</topic><topic>Signal Transduction - radiation effects</topic><topic>Solanum lycopersicum</topic><topic>solar radiation</topic><topic>temperature</topic><topic>Terpenes - metabolism</topic><topic>tomato</topic><topic>tomatoes</topic><topic>transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorente, Briardo</creatorcontrib><creatorcontrib>D'Andrea, Lucio</creatorcontrib><creatorcontrib>Ruiz‐Sola, M. Aguila</creatorcontrib><creatorcontrib>Botterweg, Esther</creatorcontrib><creatorcontrib>Pulido, Pablo</creatorcontrib><creatorcontrib>Andilla, Jordi</creatorcontrib><creatorcontrib>Loza‐Alvarez, Pablo</creatorcontrib><creatorcontrib>Rodriguez‐Concepcion, Manuel</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorente, Briardo</au><au>D'Andrea, Lucio</au><au>Ruiz‐Sola, M. Aguila</au><au>Botterweg, Esther</au><au>Pulido, Pablo</au><au>Andilla, Jordi</au><au>Loza‐Alvarez, Pablo</au><au>Rodriguez‐Concepcion, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2016</date><risdate>2016</risdate><volume>85</volume><issue>1</issue><spage>107</spage><epage>119</epage><pages>107-119</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health‐promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome‐interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF‐mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self‐shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co‐opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid‐enriched fruits.</abstract><cop>England</cop><pub>Blackwell Scientific Publishers and BIOS Scientific Publishers in association with the Society for Experimental Biology</pub><pmid>26648446</pmid><doi>10.1111/tpj.13094</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2016, Vol.85 (1), p.107-119
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1760901587
source Access via Wiley Online Library; Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects animals
Arabidopsis thaliana
Biosynthesis
canopy
carotenoid
Carotenoids
Carotenoids - metabolism
Chlorophyll
Chlorophyll - metabolism
color
Environment
Ethylenes - metabolism
fruit
Fruit - genetics
Fruit - physiology
Fruit - radiation effects
fruits
Gene expression
Gene Expression Regulation, Plant - radiation effects
genes
health promotion
Light
Lycopersicon esculentum - genetics
Lycopersicon esculentum - physiology
Lycopersicon esculentum - radiation effects
Phytochrome - metabolism
phytochrome‐interacting factor
pigments
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
proteins
ripening
seed dispersal
shade
signal transduction
Signal Transduction - radiation effects
Solanum lycopersicum
solar radiation
temperature
Terpenes - metabolism
tomato
tomatoes
transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
title Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light‐dependent mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-28T19%3A37%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tomato%20fruit%20carotenoid%20biosynthesis%20is%20adjusted%20to%20actual%20ripening%20progression%20by%20a%20light%E2%80%90dependent%20mechanism&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Llorente,%20Briardo&rft.date=2016&rft.volume=85&rft.issue=1&rft.spage=107&rft.epage=119&rft.pages=107-119&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13094&rft_dat=%3Cproquest_cross%3E1760901587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1757998047&rft_id=info:pmid/26648446&rfr_iscdi=true