Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique
The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins...
Gespeichert in:
Veröffentlicht in: | Journal of the American Society for Mass Spectrometry 2016-02, Vol.27 (2), p.233-243 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 243 |
---|---|
container_issue | 2 |
container_start_page | 233 |
container_title | Journal of the American Society for Mass Spectrometry |
container_volume | 27 |
creator | Geer, M. Ariel Fitzgerald, Michael C. |
description | The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the
Saccharomyces cerevisiae
proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the
Saccharomyces
Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.
Graphical Abstract
ᅟ |
doi_str_mv | 10.1007/s13361-015-1290-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1760889775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760889775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</originalsourceid><addsrcrecordid>eNp1kE9PGzEQxa2qqEDaD9BLtVIvXFzGf9ZeH6MIChISNKRSb67jnSVG2V2wd5HIp69pAkJInGakee_NzI-Qrwx-MAB9nJgQilFgJWXcAN18IAes0oYyxsXH3IOUFASU--QwpVsApsHoT2Sfq1IASHVA_s5WLjo_YAwbN4S-K_qmGFZYXDvv86hvHz2mwmPEh5CCw2K6uKLnXTZkV99iMabQ3fy3hMV8-oteX80v_xQL9Ksu3I_4mew1bp3wy65OyO_Tk8XsjF5c_jyfTS-oF5oPVNXClc6jrsEYp-SycZ5LWS1NiQaMb6TiVaM4Nkry_LQT-bkaagQFS48oJuRom3sX-7w2DbYNyeN67Trsx2SZVlBVRusyS7-_kd72Y-zydZYZVYHkMvObELZV-dinFLGxdzG0Lj5aBvYJv93itxm_fcJvN9nzbZc8LlusXxzPvLOAbwUpj7objK9Wv5v6D_euj9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968042412</pqid></control><display><type>article</type><title>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Geer, M. Ariel ; Fitzgerald, Michael C.</creator><creatorcontrib>Geer, M. Ariel ; Fitzgerald, Michael C.</creatorcontrib><description>The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the
Saccharomyces cerevisiae
proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the
Saccharomyces
Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.
Graphical Abstract
ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-015-1290-z</identifier><identifier>PMID: 26530046</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Amino acids ; Analytical Chemistry ; Baking yeast ; Binding ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chromatography, Liquid - methods ; Computational Biology - methods ; Isotope Labeling - methods ; Kinases ; Mass spectrometry ; Organic Chemistry ; Oxidation ; Oxidation-Reduction ; Protein Binding ; Protein Stability ; Proteins ; Proteomics ; Proteomics - methods ; Research Article ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Stability ; Tandem Mass Spectrometry - methods ; Thermodynamics ; Yeast</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2016-02, Vol.27 (2), p.233-243</ispartof><rights>American Society for Mass Spectrometry 2015</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</citedby><cites>FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-015-1290-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-015-1290-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26530046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geer, M. Ariel</creatorcontrib><creatorcontrib>Fitzgerald, Michael C.</creatorcontrib><title>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the
Saccharomyces cerevisiae
proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the
Saccharomyces
Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.
Graphical Abstract
ᅟ</description><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Baking yeast</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography, Liquid - methods</subject><subject>Computational Biology - methods</subject><subject>Isotope Labeling - methods</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Research Article</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stability</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Thermodynamics</subject><subject>Yeast</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9PGzEQxa2qqEDaD9BLtVIvXFzGf9ZeH6MIChISNKRSb67jnSVG2V2wd5HIp69pAkJInGakee_NzI-Qrwx-MAB9nJgQilFgJWXcAN18IAes0oYyxsXH3IOUFASU--QwpVsApsHoT2Sfq1IASHVA_s5WLjo_YAwbN4S-K_qmGFZYXDvv86hvHz2mwmPEh5CCw2K6uKLnXTZkV99iMabQ3fy3hMV8-oteX80v_xQL9Ksu3I_4mew1bp3wy65OyO_Tk8XsjF5c_jyfTS-oF5oPVNXClc6jrsEYp-SycZ5LWS1NiQaMb6TiVaM4Nkry_LQT-bkaagQFS48oJuRom3sX-7w2DbYNyeN67Trsx2SZVlBVRusyS7-_kd72Y-zydZYZVYHkMvObELZV-dinFLGxdzG0Lj5aBvYJv93itxm_fcJvN9nzbZc8LlusXxzPvLOAbwUpj7objK9Wv5v6D_euj9o</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Geer, M. Ariel</creator><creator>Fitzgerald, Michael C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160201</creationdate><title>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</title><author>Geer, M. Ariel ; Fitzgerald, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Baking yeast</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography, Liquid - methods</topic><topic>Computational Biology - methods</topic><topic>Isotope Labeling - methods</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Research Article</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stability</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Thermodynamics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geer, M. Ariel</creatorcontrib><creatorcontrib>Fitzgerald, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geer, M. Ariel</au><au>Fitzgerald, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>27</volume><issue>2</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the
Saccharomyces cerevisiae
proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the
Saccharomyces
Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins.
Graphical Abstract
ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26530046</pmid><doi>10.1007/s13361-015-1290-z</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-0305 |
ispartof | Journal of the American Society for Mass Spectrometry, 2016-02, Vol.27 (2), p.233-243 |
issn | 1044-0305 1879-1123 |
language | eng |
recordid | cdi_proquest_miscellaneous_1760889775 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adenosine triphosphate Adenosine Triphosphate - metabolism Amino acids Analytical Chemistry Baking yeast Binding Bioinformatics Biotechnology Chemistry Chemistry and Materials Science Chromatography, Liquid - methods Computational Biology - methods Isotope Labeling - methods Kinases Mass spectrometry Organic Chemistry Oxidation Oxidation-Reduction Protein Binding Protein Stability Proteins Proteomics Proteomics - methods Research Article Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism Stability Tandem Mass Spectrometry - methods Thermodynamics Yeast |
title | Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Saccharomyces%20cerevisiae%20ATP-Interactome%20using%20the%20iTRAQ-SPROX%20Technique&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Geer,%20M.%20Ariel&rft.date=2016-02-01&rft.volume=27&rft.issue=2&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-015-1290-z&rft_dat=%3Cproquest_cross%3E1760889775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968042412&rft_id=info:pmid/26530046&rfr_iscdi=true |