Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique

The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Society for Mass Spectrometry 2016-02, Vol.27 (2), p.233-243
Hauptverfasser: Geer, M. Ariel, Fitzgerald, Michael C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 2
container_start_page 233
container_title Journal of the American Society for Mass Spectrometry
container_volume 27
creator Geer, M. Ariel
Fitzgerald, Michael C.
description The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins. Graphical Abstract ᅟ
doi_str_mv 10.1007/s13361-015-1290-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1760889775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760889775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</originalsourceid><addsrcrecordid>eNp1kE9PGzEQxa2qqEDaD9BLtVIvXFzGf9ZeH6MIChISNKRSb67jnSVG2V2wd5HIp69pAkJInGakee_NzI-Qrwx-MAB9nJgQilFgJWXcAN18IAes0oYyxsXH3IOUFASU--QwpVsApsHoT2Sfq1IASHVA_s5WLjo_YAwbN4S-K_qmGFZYXDvv86hvHz2mwmPEh5CCw2K6uKLnXTZkV99iMabQ3fy3hMV8-oteX80v_xQL9Ksu3I_4mew1bp3wy65OyO_Tk8XsjF5c_jyfTS-oF5oPVNXClc6jrsEYp-SycZ5LWS1NiQaMb6TiVaM4Nkry_LQT-bkaagQFS48oJuRom3sX-7w2DbYNyeN67Trsx2SZVlBVRusyS7-_kd72Y-zydZYZVYHkMvObELZV-dinFLGxdzG0Lj5aBvYJv93itxm_fcJvN9nzbZc8LlusXxzPvLOAbwUpj7objK9Wv5v6D_euj9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1968042412</pqid></control><display><type>article</type><title>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Geer, M. Ariel ; Fitzgerald, Michael C.</creator><creatorcontrib>Geer, M. Ariel ; Fitzgerald, Michael C.</creatorcontrib><description>The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins. Graphical Abstract ᅟ</description><identifier>ISSN: 1044-0305</identifier><identifier>EISSN: 1879-1123</identifier><identifier>DOI: 10.1007/s13361-015-1290-z</identifier><identifier>PMID: 26530046</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Amino acids ; Analytical Chemistry ; Baking yeast ; Binding ; Bioinformatics ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; Chromatography, Liquid - methods ; Computational Biology - methods ; Isotope Labeling - methods ; Kinases ; Mass spectrometry ; Organic Chemistry ; Oxidation ; Oxidation-Reduction ; Protein Binding ; Protein Stability ; Proteins ; Proteomics ; Proteomics - methods ; Research Article ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; Stability ; Tandem Mass Spectrometry - methods ; Thermodynamics ; Yeast</subject><ispartof>Journal of the American Society for Mass Spectrometry, 2016-02, Vol.27 (2), p.233-243</ispartof><rights>American Society for Mass Spectrometry 2015</rights><rights>Journal of The American Society for Mass Spectrometry is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</citedby><cites>FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13361-015-1290-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13361-015-1290-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26530046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Geer, M. Ariel</creatorcontrib><creatorcontrib>Fitzgerald, Michael C.</creatorcontrib><title>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</title><title>Journal of the American Society for Mass Spectrometry</title><addtitle>J. Am. Soc. Mass Spectrom</addtitle><addtitle>J Am Soc Mass Spectrom</addtitle><description>The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins. Graphical Abstract ᅟ</description><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Baking yeast</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography, Liquid - methods</subject><subject>Computational Biology - methods</subject><subject>Isotope Labeling - methods</subject><subject>Kinases</subject><subject>Mass spectrometry</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein Binding</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Research Article</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Stability</subject><subject>Tandem Mass Spectrometry - methods</subject><subject>Thermodynamics</subject><subject>Yeast</subject><issn>1044-0305</issn><issn>1879-1123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9PGzEQxa2qqEDaD9BLtVIvXFzGf9ZeH6MIChISNKRSb67jnSVG2V2wd5HIp69pAkJInGakee_NzI-Qrwx-MAB9nJgQilFgJWXcAN18IAes0oYyxsXH3IOUFASU--QwpVsApsHoT2Sfq1IASHVA_s5WLjo_YAwbN4S-K_qmGFZYXDvv86hvHz2mwmPEh5CCw2K6uKLnXTZkV99iMabQ3fy3hMV8-oteX80v_xQL9Ksu3I_4mew1bp3wy65OyO_Tk8XsjF5c_jyfTS-oF5oPVNXClc6jrsEYp-SycZ5LWS1NiQaMb6TiVaM4Nkry_LQT-bkaagQFS48oJuRom3sX-7w2DbYNyeN67Trsx2SZVlBVRusyS7-_kd72Y-zydZYZVYHkMvObELZV-dinFLGxdzG0Lj5aBvYJv93itxm_fcJvN9nzbZc8LlusXxzPvLOAbwUpj7objK9Wv5v6D_euj9o</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>Geer, M. Ariel</creator><creator>Fitzgerald, Michael C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20160201</creationdate><title>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</title><author>Geer, M. Ariel ; Fitzgerald, Michael C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6d3a5ace7d099a64bfac2448b95e909cf4628f62ef642361a3104d0de060bcee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Baking yeast</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography, Liquid - methods</topic><topic>Computational Biology - methods</topic><topic>Isotope Labeling - methods</topic><topic>Kinases</topic><topic>Mass spectrometry</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein Binding</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Research Article</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Stability</topic><topic>Tandem Mass Spectrometry - methods</topic><topic>Thermodynamics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geer, M. Ariel</creatorcontrib><creatorcontrib>Fitzgerald, Michael C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Society for Mass Spectrometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geer, M. Ariel</au><au>Fitzgerald, Michael C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique</atitle><jtitle>Journal of the American Society for Mass Spectrometry</jtitle><stitle>J. Am. Soc. Mass Spectrom</stitle><addtitle>J Am Soc Mass Spectrom</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>27</volume><issue>2</issue><spage>233</spage><epage>243</epage><pages>233-243</pages><issn>1044-0305</issn><eissn>1879-1123</eissn><abstract>The stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to identify adenosine triphosphate (ATP) interacting proteins in the Saccharomyces cerevisiae proteome. The SPROX methodology utilized in this work enabled 373 proteins in a yeast cell lysate to be assayed for ATP interactions (both direct and indirect) using the non-hydrolyzable ATP analog, adenylyl imidodiphosphate (AMP-PNP). A total of 28 proteins were identified with AMP-PNP-induced thermodynamic stability changes. These protein hits included 14 proteins that were previously annotated as ATP-binding proteins in the Saccharomyces Genome Database (SGD). The 14 non-annotated ATP-binding proteins included nine proteins that were previously found to be ATP-sensitive in an earlier SPROX study using a stable isotope labeling with amino acids in cell culture (SILAC)-based approach. A bioinformatics analysis of the protein hits identified here and in the earlier SILAC-SPROX experiments revealed that many of the previously annotated ATP-binding protein hits were kinases, ligases, and chaperones. In contrast, many of the newly discovered ATP-sensitive proteins were not from these protein classes, but rather were hydrolases, oxidoreductases, and nucleic acid-binding proteins. Graphical Abstract ᅟ</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26530046</pmid><doi>10.1007/s13361-015-1290-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-0305
ispartof Journal of the American Society for Mass Spectrometry, 2016-02, Vol.27 (2), p.233-243
issn 1044-0305
1879-1123
language eng
recordid cdi_proquest_miscellaneous_1760889775
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adenosine triphosphate
Adenosine Triphosphate - metabolism
Amino acids
Analytical Chemistry
Baking yeast
Binding
Bioinformatics
Biotechnology
Chemistry
Chemistry and Materials Science
Chromatography, Liquid - methods
Computational Biology - methods
Isotope Labeling - methods
Kinases
Mass spectrometry
Organic Chemistry
Oxidation
Oxidation-Reduction
Protein Binding
Protein Stability
Proteins
Proteomics
Proteomics - methods
Research Article
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - metabolism
Stability
Tandem Mass Spectrometry - methods
Thermodynamics
Yeast
title Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20Saccharomyces%20cerevisiae%20ATP-Interactome%20using%20the%20iTRAQ-SPROX%20Technique&rft.jtitle=Journal%20of%20the%20American%20Society%20for%20Mass%20Spectrometry&rft.au=Geer,%20M.%20Ariel&rft.date=2016-02-01&rft.volume=27&rft.issue=2&rft.spage=233&rft.epage=243&rft.pages=233-243&rft.issn=1044-0305&rft.eissn=1879-1123&rft_id=info:doi/10.1007/s13361-015-1290-z&rft_dat=%3Cproquest_cross%3E1760889775%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1968042412&rft_id=info:pmid/26530046&rfr_iscdi=true