Atropisomerization of 8‑Membered Dibenzolactam: Experimental NMR and Theoretical DFT Study

Detailed experimental and theoretical quantum mechanical analysis of the atropisomerization mechanism of a complex, bridged biaryl molecule with imbedded biphenyl, amine, and lactam moieties, 7,8-diallyl-5-benzyl-7,8-dihydrodibenzo­[e,g]­[1,4]­diazocin-6­(5H)-one (1), was undertaken. Experimental Gi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2016-01, Vol.81 (2), p.485-501
1. Verfasser: Buevich, Alexei V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 501
container_issue 2
container_start_page 485
container_title Journal of organic chemistry
container_volume 81
creator Buevich, Alexei V
description Detailed experimental and theoretical quantum mechanical analysis of the atropisomerization mechanism of a complex, bridged biaryl molecule with imbedded biphenyl, amine, and lactam moieties, 7,8-diallyl-5-benzyl-7,8-dihydrodibenzo­[e,g]­[1,4]­diazocin-6­(5H)-one (1), was undertaken. Experimental Gibbs free activation energy, activation enthalpy, and activation entropy were established by temperature-dependent kinetic NMR experiments. Theoretical analysis utilized density functional theory (DFT) calculations at the B3LYP/6-31G­(d) level of theory. Twelve energy minima and 17 transition states associated with five different atropisomer interconversion pathways were found by the combination of DFT calculated two-dimensional potential energy surfaces (2D PES) and the quadratic synchronous transit-guided (QST2) method. Among the five possible atropisomerization pathways, the lowest Gibbs free activation energy 25.8 kcal/mol was in close agreement with the experimentally determined value of 26.8 kcal/mol. Theoretical activation entropies and enthalpies were also consistent with experimental data. Geometrical and vibrational analysis of transition states and metastable intermediates suggested the mechanism of atropisomer interconversion of 1 as a rotation of the eclipsed endocyclic coordinate in a clockwise or counterclockwise direction along the ring. Puckering ability at least in one of the segments of the ring appears to be one of the most critical factors defining the height of atropisomerization barrier.
doi_str_mv 10.1021/acs.joc.5b02321
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1760858388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760858388</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-fcf5082f9f6c33871ae9c7a7f77785a300e8a575dbbae6f182dcb6af22cea343</originalsourceid><addsrcrecordid>eNp1kMlKxEAQhhtRdFzO3iRHQTL2Yi_jTcYVXEDnKIRKpxojSXrsTkA9-Qq-ok9iy4zerEtB8f0_1EfILqNjRjk7BBvHz96OZUm54GyFjJjkNFcTerRKRpRynguuxAbZjPGZppFSrpMNrpRQmukReTzpg5_X0bcY6nfoa99l3mXm6-PzBtsSA1bZaV1i9-4bsD20x9nZ6zyxLXY9NNntzX0GXZXNntAH7Gubbqfns-yhH6q3bbLmoIm4s9xbZHZ-Npte5td3F1fTk-schBB97qyT1HA3ccoKYTQDnFgN2mmtjQRBKRqQWlZlCagcM7yypQLHuUUQR2KL7C9q58G_DBj7oq2jxaaBDv0QC6YVNdIIYxJ6uEBt8DEGdMU8vQLhrWC0-DFaJKNFMlosjabE3rJ8KFus_vhfhQk4WACL5BC69Oq_dd-1pILu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760858388</pqid></control><display><type>article</type><title>Atropisomerization of 8‑Membered Dibenzolactam: Experimental NMR and Theoretical DFT Study</title><source>ACS_美国化学学会期刊(与NSTL共建)</source><creator>Buevich, Alexei V</creator><creatorcontrib>Buevich, Alexei V</creatorcontrib><description>Detailed experimental and theoretical quantum mechanical analysis of the atropisomerization mechanism of a complex, bridged biaryl molecule with imbedded biphenyl, amine, and lactam moieties, 7,8-diallyl-5-benzyl-7,8-dihydrodibenzo­[e,g]­[1,4]­diazocin-6­(5H)-one (1), was undertaken. Experimental Gibbs free activation energy, activation enthalpy, and activation entropy were established by temperature-dependent kinetic NMR experiments. Theoretical analysis utilized density functional theory (DFT) calculations at the B3LYP/6-31G­(d) level of theory. Twelve energy minima and 17 transition states associated with five different atropisomer interconversion pathways were found by the combination of DFT calculated two-dimensional potential energy surfaces (2D PES) and the quadratic synchronous transit-guided (QST2) method. Among the five possible atropisomerization pathways, the lowest Gibbs free activation energy 25.8 kcal/mol was in close agreement with the experimentally determined value of 26.8 kcal/mol. Theoretical activation entropies and enthalpies were also consistent with experimental data. Geometrical and vibrational analysis of transition states and metastable intermediates suggested the mechanism of atropisomer interconversion of 1 as a rotation of the eclipsed endocyclic coordinate in a clockwise or counterclockwise direction along the ring. Puckering ability at least in one of the segments of the ring appears to be one of the most critical factors defining the height of atropisomerization barrier.</description><identifier>ISSN: 0022-3263</identifier><identifier>EISSN: 1520-6904</identifier><identifier>DOI: 10.1021/acs.joc.5b02321</identifier><identifier>PMID: 26636717</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of organic chemistry, 2016-01, Vol.81 (2), p.485-501</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-fcf5082f9f6c33871ae9c7a7f77785a300e8a575dbbae6f182dcb6af22cea343</citedby><cites>FETCH-LOGICAL-a333t-fcf5082f9f6c33871ae9c7a7f77785a300e8a575dbbae6f182dcb6af22cea343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.joc.5b02321$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.joc.5b02321$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26636717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buevich, Alexei V</creatorcontrib><title>Atropisomerization of 8‑Membered Dibenzolactam: Experimental NMR and Theoretical DFT Study</title><title>Journal of organic chemistry</title><addtitle>J. Org. Chem</addtitle><description>Detailed experimental and theoretical quantum mechanical analysis of the atropisomerization mechanism of a complex, bridged biaryl molecule with imbedded biphenyl, amine, and lactam moieties, 7,8-diallyl-5-benzyl-7,8-dihydrodibenzo­[e,g]­[1,4]­diazocin-6­(5H)-one (1), was undertaken. Experimental Gibbs free activation energy, activation enthalpy, and activation entropy were established by temperature-dependent kinetic NMR experiments. Theoretical analysis utilized density functional theory (DFT) calculations at the B3LYP/6-31G­(d) level of theory. Twelve energy minima and 17 transition states associated with five different atropisomer interconversion pathways were found by the combination of DFT calculated two-dimensional potential energy surfaces (2D PES) and the quadratic synchronous transit-guided (QST2) method. Among the five possible atropisomerization pathways, the lowest Gibbs free activation energy 25.8 kcal/mol was in close agreement with the experimentally determined value of 26.8 kcal/mol. Theoretical activation entropies and enthalpies were also consistent with experimental data. Geometrical and vibrational analysis of transition states and metastable intermediates suggested the mechanism of atropisomer interconversion of 1 as a rotation of the eclipsed endocyclic coordinate in a clockwise or counterclockwise direction along the ring. Puckering ability at least in one of the segments of the ring appears to be one of the most critical factors defining the height of atropisomerization barrier.</description><issn>0022-3263</issn><issn>1520-6904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMlKxEAQhhtRdFzO3iRHQTL2Yi_jTcYVXEDnKIRKpxojSXrsTkA9-Qq-ok9iy4zerEtB8f0_1EfILqNjRjk7BBvHz96OZUm54GyFjJjkNFcTerRKRpRynguuxAbZjPGZppFSrpMNrpRQmukReTzpg5_X0bcY6nfoa99l3mXm6-PzBtsSA1bZaV1i9-4bsD20x9nZ6zyxLXY9NNntzX0GXZXNntAH7Gubbqfns-yhH6q3bbLmoIm4s9xbZHZ-Npte5td3F1fTk-schBB97qyT1HA3ccoKYTQDnFgN2mmtjQRBKRqQWlZlCagcM7yypQLHuUUQR2KL7C9q58G_DBj7oq2jxaaBDv0QC6YVNdIIYxJ6uEBt8DEGdMU8vQLhrWC0-DFaJKNFMlosjabE3rJ8KFus_vhfhQk4WACL5BC69Oq_dd-1pILu</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Buevich, Alexei V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160115</creationdate><title>Atropisomerization of 8‑Membered Dibenzolactam: Experimental NMR and Theoretical DFT Study</title><author>Buevich, Alexei V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-fcf5082f9f6c33871ae9c7a7f77785a300e8a575dbbae6f182dcb6af22cea343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buevich, Alexei V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buevich, Alexei V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atropisomerization of 8‑Membered Dibenzolactam: Experimental NMR and Theoretical DFT Study</atitle><jtitle>Journal of organic chemistry</jtitle><addtitle>J. Org. Chem</addtitle><date>2016-01-15</date><risdate>2016</risdate><volume>81</volume><issue>2</issue><spage>485</spage><epage>501</epage><pages>485-501</pages><issn>0022-3263</issn><eissn>1520-6904</eissn><abstract>Detailed experimental and theoretical quantum mechanical analysis of the atropisomerization mechanism of a complex, bridged biaryl molecule with imbedded biphenyl, amine, and lactam moieties, 7,8-diallyl-5-benzyl-7,8-dihydrodibenzo­[e,g]­[1,4]­diazocin-6­(5H)-one (1), was undertaken. Experimental Gibbs free activation energy, activation enthalpy, and activation entropy were established by temperature-dependent kinetic NMR experiments. Theoretical analysis utilized density functional theory (DFT) calculations at the B3LYP/6-31G­(d) level of theory. Twelve energy minima and 17 transition states associated with five different atropisomer interconversion pathways were found by the combination of DFT calculated two-dimensional potential energy surfaces (2D PES) and the quadratic synchronous transit-guided (QST2) method. Among the five possible atropisomerization pathways, the lowest Gibbs free activation energy 25.8 kcal/mol was in close agreement with the experimentally determined value of 26.8 kcal/mol. Theoretical activation entropies and enthalpies were also consistent with experimental data. Geometrical and vibrational analysis of transition states and metastable intermediates suggested the mechanism of atropisomer interconversion of 1 as a rotation of the eclipsed endocyclic coordinate in a clockwise or counterclockwise direction along the ring. Puckering ability at least in one of the segments of the ring appears to be one of the most critical factors defining the height of atropisomerization barrier.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26636717</pmid><doi>10.1021/acs.joc.5b02321</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3263
ispartof Journal of organic chemistry, 2016-01, Vol.81 (2), p.485-501
issn 0022-3263
1520-6904
language eng
recordid cdi_proquest_miscellaneous_1760858388
source ACS_美国化学学会期刊(与NSTL共建)
title Atropisomerization of 8‑Membered Dibenzolactam: Experimental NMR and Theoretical DFT Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atropisomerization%20of%208%E2%80%91Membered%20Dibenzolactam:%20Experimental%20NMR%20and%20Theoretical%20DFT%20Study&rft.jtitle=Journal%20of%20organic%20chemistry&rft.au=Buevich,%20Alexei%20V&rft.date=2016-01-15&rft.volume=81&rft.issue=2&rft.spage=485&rft.epage=501&rft.pages=485-501&rft.issn=0022-3263&rft.eissn=1520-6904&rft_id=info:doi/10.1021/acs.joc.5b02321&rft_dat=%3Cproquest_cross%3E1760858388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760858388&rft_id=info:pmid/26636717&rfr_iscdi=true