From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis

Development goals and poverty-reduction policies are often focused on raising agricultural productivity and dependent on farm household level data. Historically, household surveys commonly employed self-reported land area measurements for cost-effectiveness and convenience. However, as we illustrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of African economies 2015-11, Vol.24 (5), p.593-628
Hauptverfasser: Carletto, Calogero, Gourlay, Sydney, Winters, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 5
container_start_page 593
container_title Journal of African economies
container_volume 24
creator Carletto, Calogero
Gourlay, Sydney
Winters, Paul
description Development goals and poverty-reduction policies are often focused on raising agricultural productivity and dependent on farm household level data. Historically, household surveys commonly employed self-reported land area measurements for cost-effectiveness and convenience. However, as we illustrate here, these self-reported estimates may measure land with systematic error resulting in sizable biases. This has led to the increased use of Global Positioning Systems (GPS) and other modern technologies to measure land size. In this article, we compare self-reported (SR) and GPS land measurement to assess the differences between the measures, to identify the sources of differences, and to determine the implications of the different measures on agricultural analysis. The results from the analysis of data from four African countries indicate that SR land areas systematically differ from GPS land measures and that this difference leads to biased estimates of the relationship between land and productivity and consistently low estimates of land inequality. Through the evidence and analysis presented here, we conclude that the more systematic use of GPS-measured land area will result in improved agricultural statistics and more accurate analysis of agricultural relationships, which will better inform future policy. [web URL: http://jae.oxfordjournals.org/content/24/5/593.abstract]
doi_str_mv 10.1093/jae/ejv011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1758937916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3872647361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c5769e3f4b4007caeb67a5de097f5162ebb01bbc9bfb26f0492946000a8d4a7a3</originalsourceid><addsrcrecordid>eNpdkNFKwzAUhoMoOKc3PkHAGxHqTpo0Wbwbw83BREG9Lkl3Ki1tM5NU2Nvbsl15dTiHj5_zf4TcMnhkoPmsNjjD-hcYOyMTJqRIuEr5OZmAljyZQyouyVUINQBkgvEJMSvvWrruMYRYtSZioNHR9fvHaXuiW9Pt6MKjoa9oQu-xxS7S8bhp901VmFi5LtDSebr49lXRN7H3pqGLzjSHUIVrclGaJuDNaU7J1-r5c_mSbN_Wm-VimxRcspgUmZIaeSmsAFCFQSuVyXYIWpUZkylaC8zaQtvSprIEoVMt5NDDzHfCKMOn5P6Yu_fuZ-gT87YKBTaN6dD1IWcqm2uuNJMDevcPrV3vh39HimeQSpAj9XCkCu9C8Fjmez9I8YecQT7azgfb-dE2_wPTB3Oi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735026066</pqid></control><display><type>article</type><title>From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis</title><source>Oxford Journals【Remote access available】</source><creator>Carletto, Calogero ; Gourlay, Sydney ; Winters, Paul</creator><creatorcontrib>Carletto, Calogero ; Gourlay, Sydney ; Winters, Paul</creatorcontrib><description>Development goals and poverty-reduction policies are often focused on raising agricultural productivity and dependent on farm household level data. Historically, household surveys commonly employed self-reported land area measurements for cost-effectiveness and convenience. However, as we illustrate here, these self-reported estimates may measure land with systematic error resulting in sizable biases. This has led to the increased use of Global Positioning Systems (GPS) and other modern technologies to measure land size. In this article, we compare self-reported (SR) and GPS land measurement to assess the differences between the measures, to identify the sources of differences, and to determine the implications of the different measures on agricultural analysis. The results from the analysis of data from four African countries indicate that SR land areas systematically differ from GPS land measures and that this difference leads to biased estimates of the relationship between land and productivity and consistently low estimates of land inequality. Through the evidence and analysis presented here, we conclude that the more systematic use of GPS-measured land area will result in improved agricultural statistics and more accurate analysis of agricultural relationships, which will better inform future policy. [web URL: http://jae.oxfordjournals.org/content/24/5/593.abstract]</description><identifier>ISSN: 0963-8024</identifier><identifier>EISSN: 1464-3723</identifier><identifier>DOI: 10.1093/jae/ejv011</identifier><language>eng</language><publisher>Oxford: Oxford Publishing Limited (England)</publisher><subject>Africa ; Agricultural production ; Developing countries ; Economic analysis ; Estimation bias ; Global positioning systems ; GPS ; Land ; Land area ; LDCs ; Poverty ; Self report ; Studies</subject><ispartof>Journal of African economies, 2015-11, Vol.24 (5), p.593-628</ispartof><rights>Copyright Oxford Publishing Limited(England) Nov 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c5769e3f4b4007caeb67a5de097f5162ebb01bbc9bfb26f0492946000a8d4a7a3</citedby><cites>FETCH-LOGICAL-c361t-c5769e3f4b4007caeb67a5de097f5162ebb01bbc9bfb26f0492946000a8d4a7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carletto, Calogero</creatorcontrib><creatorcontrib>Gourlay, Sydney</creatorcontrib><creatorcontrib>Winters, Paul</creatorcontrib><title>From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis</title><title>Journal of African economies</title><description>Development goals and poverty-reduction policies are often focused on raising agricultural productivity and dependent on farm household level data. Historically, household surveys commonly employed self-reported land area measurements for cost-effectiveness and convenience. However, as we illustrate here, these self-reported estimates may measure land with systematic error resulting in sizable biases. This has led to the increased use of Global Positioning Systems (GPS) and other modern technologies to measure land size. In this article, we compare self-reported (SR) and GPS land measurement to assess the differences between the measures, to identify the sources of differences, and to determine the implications of the different measures on agricultural analysis. The results from the analysis of data from four African countries indicate that SR land areas systematically differ from GPS land measures and that this difference leads to biased estimates of the relationship between land and productivity and consistently low estimates of land inequality. Through the evidence and analysis presented here, we conclude that the more systematic use of GPS-measured land area will result in improved agricultural statistics and more accurate analysis of agricultural relationships, which will better inform future policy. [web URL: http://jae.oxfordjournals.org/content/24/5/593.abstract]</description><subject>Africa</subject><subject>Agricultural production</subject><subject>Developing countries</subject><subject>Economic analysis</subject><subject>Estimation bias</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Land</subject><subject>Land area</subject><subject>LDCs</subject><subject>Poverty</subject><subject>Self report</subject><subject>Studies</subject><issn>0963-8024</issn><issn>1464-3723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkNFKwzAUhoMoOKc3PkHAGxHqTpo0Wbwbw83BREG9Lkl3Ki1tM5NU2Nvbsl15dTiHj5_zf4TcMnhkoPmsNjjD-hcYOyMTJqRIuEr5OZmAljyZQyouyVUINQBkgvEJMSvvWrruMYRYtSZioNHR9fvHaXuiW9Pt6MKjoa9oQu-xxS7S8bhp901VmFi5LtDSebr49lXRN7H3pqGLzjSHUIVrclGaJuDNaU7J1-r5c_mSbN_Wm-VimxRcspgUmZIaeSmsAFCFQSuVyXYIWpUZkylaC8zaQtvSprIEoVMt5NDDzHfCKMOn5P6Yu_fuZ-gT87YKBTaN6dD1IWcqm2uuNJMDevcPrV3vh39HimeQSpAj9XCkCu9C8Fjmez9I8YecQT7azgfb-dE2_wPTB3Oi</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Carletto, Calogero</creator><creator>Gourlay, Sydney</creator><creator>Winters, Paul</creator><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20151101</creationdate><title>From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis</title><author>Carletto, Calogero ; Gourlay, Sydney ; Winters, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c5769e3f4b4007caeb67a5de097f5162ebb01bbc9bfb26f0492946000a8d4a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Africa</topic><topic>Agricultural production</topic><topic>Developing countries</topic><topic>Economic analysis</topic><topic>Estimation bias</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Land</topic><topic>Land area</topic><topic>LDCs</topic><topic>Poverty</topic><topic>Self report</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carletto, Calogero</creatorcontrib><creatorcontrib>Gourlay, Sydney</creatorcontrib><creatorcontrib>Winters, Paul</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of African economies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carletto, Calogero</au><au>Gourlay, Sydney</au><au>Winters, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis</atitle><jtitle>Journal of African economies</jtitle><date>2015-11-01</date><risdate>2015</risdate><volume>24</volume><issue>5</issue><spage>593</spage><epage>628</epage><pages>593-628</pages><issn>0963-8024</issn><eissn>1464-3723</eissn><abstract>Development goals and poverty-reduction policies are often focused on raising agricultural productivity and dependent on farm household level data. Historically, household surveys commonly employed self-reported land area measurements for cost-effectiveness and convenience. However, as we illustrate here, these self-reported estimates may measure land with systematic error resulting in sizable biases. This has led to the increased use of Global Positioning Systems (GPS) and other modern technologies to measure land size. In this article, we compare self-reported (SR) and GPS land measurement to assess the differences between the measures, to identify the sources of differences, and to determine the implications of the different measures on agricultural analysis. The results from the analysis of data from four African countries indicate that SR land areas systematically differ from GPS land measures and that this difference leads to biased estimates of the relationship between land and productivity and consistently low estimates of land inequality. Through the evidence and analysis presented here, we conclude that the more systematic use of GPS-measured land area will result in improved agricultural statistics and more accurate analysis of agricultural relationships, which will better inform future policy. [web URL: http://jae.oxfordjournals.org/content/24/5/593.abstract]</abstract><cop>Oxford</cop><pub>Oxford Publishing Limited (England)</pub><doi>10.1093/jae/ejv011</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0963-8024
ispartof Journal of African economies, 2015-11, Vol.24 (5), p.593-628
issn 0963-8024
1464-3723
language eng
recordid cdi_proquest_miscellaneous_1758937916
source Oxford Journals【Remote access available】
subjects Africa
Agricultural production
Developing countries
Economic analysis
Estimation bias
Global positioning systems
GPS
Land
Land area
LDCs
Poverty
Self report
Studies
title From Guesstimates to GPStimates: Land Area Measurement and Implications for Agricultural Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20Guesstimates%20to%20GPStimates:%20Land%20Area%20Measurement%20and%20Implications%20for%20Agricultural%20Analysis&rft.jtitle=Journal%20of%20African%20economies&rft.au=Carletto,%20Calogero&rft.date=2015-11-01&rft.volume=24&rft.issue=5&rft.spage=593&rft.epage=628&rft.pages=593-628&rft.issn=0963-8024&rft.eissn=1464-3723&rft_id=info:doi/10.1093/jae/ejv011&rft_dat=%3Cproquest_cross%3E3872647361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735026066&rft_id=info:pmid/&rfr_iscdi=true