Structural Specificity Conferred by a Group I RNA Peripheral Element

Like proteins, structured RNAs must specify a native conformation that is more stable than all other possible conformations. Local structure is much more stable for RNA than for protein, so it is likely that the principal challenge for RNA is to stabilize the native structure relative to misfolded a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-07, Vol.102 (29), p.10176-10181
Hauptverfasser: Johnson, Travis H., Tijerina, Pilar, Chadee, Amanda B., Herschlag, Daniel, Russell, Rick, Doudna, Jennifer A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10181
container_issue 29
container_start_page 10176
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Johnson, Travis H.
Tijerina, Pilar
Chadee, Amanda B.
Herschlag, Daniel
Russell, Rick
Doudna, Jennifer A.
description Like proteins, structured RNAs must specify a native conformation that is more stable than all other possible conformations. Local structure is much more stable for RNA than for protein, so it is likely that the principal challenge for RNA is to stabilize the native structure relative to misfolded and partially folded intermediates rather than unfolded structures. Many structured RNAs contain peripheral structural elements, which surround the core elements. Although it is clear that peripheral elements stabilize structure within RNAs that contain them, it has not yet been explored whether they specifically stabilize the native states relative to alternative folds. A two-piece version of the group I intron RNA from Tetrahymena is used here to show that the peripheral element P5abc binds to the native conformation of the rest of the RNA 50,000 times more tightly than it binds to a long-lived misfolded conformation. Thus, P5abc stabilizes the native conformation by ≈6 kcal/mol relative to this misfolded conformation. Further, activity measurements show that for the RNA lacking P5abc, the native conformation is only marginally preferred over the misfolded conformation (
doi_str_mv 10.1073/pnas.0501498102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17585169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375949</jstor_id><sourcerecordid>3375949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-1fe73841d1cf3c1e517f6fd080505a44b6e6ed8d4919d9f4334b7adadc8ffb3f3</originalsourceid><addsrcrecordid>eNqFkc9rFDEcxYModq2evYgEDwUP0-Y7-TW5CGVba6GoWD2HTCaxs8xOpklG3P_eLLt01UtP30A-7-V98xB6DeQUiKRn02jSKeEEmGqA1E_QAoiCSjBFnqIFIbWsGlazI_QipRUhRPGGPEdHIMpRMbpAF7c5zjbP0Qz4dnK2973t8wYvw-hdjK7D7QYbfBXDPOFr_O3zOf7qYj_dua3icnBrN-aX6Jk3Q3Kv9vMY_fh4-X35qbr5cnW9PL-pLFc8V-CdpA2DDqynFhwH6YXvSFMW4IaxVjjhuqZjClSnPKOUtdJ0prON9y319Bh92PlOc7t2nS1PlxR6iv3axI0Optf_3oz9nf4ZfmkAKamQxeBkbxDD_exS1us-WTcMZnRhTlqUKLKW_FEQJG84CFXAd_-BqzDHsfyCrksrQGsJBTrbQTaGlKLzD5GB6G2PetujPvRYFG__3vTA74srAN4DW-XBrta1KgOkKMj7RxDt52HI7ncu7Jsdu0o5xAeYUskVU_QPrcm7EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201413271</pqid></control><display><type>article</type><title>Structural Specificity Conferred by a Group I RNA Peripheral Element</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Johnson, Travis H. ; Tijerina, Pilar ; Chadee, Amanda B. ; Herschlag, Daniel ; Russell, Rick ; Doudna, Jennifer A.</creator><creatorcontrib>Johnson, Travis H. ; Tijerina, Pilar ; Chadee, Amanda B. ; Herschlag, Daniel ; Russell, Rick ; Doudna, Jennifer A.</creatorcontrib><description>Like proteins, structured RNAs must specify a native conformation that is more stable than all other possible conformations. Local structure is much more stable for RNA than for protein, so it is likely that the principal challenge for RNA is to stabilize the native structure relative to misfolded and partially folded intermediates rather than unfolded structures. Many structured RNAs contain peripheral structural elements, which surround the core elements. Although it is clear that peripheral elements stabilize structure within RNAs that contain them, it has not yet been explored whether they specifically stabilize the native states relative to alternative folds. A two-piece version of the group I intron RNA from Tetrahymena is used here to show that the peripheral element P5abc binds to the native conformation of the rest of the RNA 50,000 times more tightly than it binds to a long-lived misfolded conformation. Thus, P5abc stabilizes the native conformation by ≈6 kcal/mol relative to this misfolded conformation. Further, activity measurements show that for the RNA lacking P5abc, the native conformation is only marginally preferred over the misfolded conformation (&lt;0.5 kcal/mol), indicating that the peripheral structure of this RNA is required to achieve a significant thermodynamic preference for the native state. Such "structural specificity" may be a general function of RNA peripheral domains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0501498102</identifier><identifier>PMID: 16009943</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Architecture ; Base Pairing ; Biochemistry ; Biological Sciences ; Biophysics ; Catalytic activity ; DNA Footprinting ; Gels ; Kinetics ; Mathematical constants ; Models, Molecular ; Native species ; Nucleic Acid Conformation ; Oligonucleotides ; Protein folding ; Protein refolding ; Ribonucleic acid ; RNA ; RNA Stability - genetics ; RNA, Catalytic - genetics ; Tetrahymena ; Tetrahymena - genetics ; Thermodynamics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-07, Vol.102 (29), p.10176-10181</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 19, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-1fe73841d1cf3c1e517f6fd080505a44b6e6ed8d4919d9f4334b7adadc8ffb3f3</citedby><cites>FETCH-LOGICAL-c595t-1fe73841d1cf3c1e517f6fd080505a44b6e6ed8d4919d9f4334b7adadc8ffb3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375949$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375949$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16009943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Travis H.</creatorcontrib><creatorcontrib>Tijerina, Pilar</creatorcontrib><creatorcontrib>Chadee, Amanda B.</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Russell, Rick</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><title>Structural Specificity Conferred by a Group I RNA Peripheral Element</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Like proteins, structured RNAs must specify a native conformation that is more stable than all other possible conformations. Local structure is much more stable for RNA than for protein, so it is likely that the principal challenge for RNA is to stabilize the native structure relative to misfolded and partially folded intermediates rather than unfolded structures. Many structured RNAs contain peripheral structural elements, which surround the core elements. Although it is clear that peripheral elements stabilize structure within RNAs that contain them, it has not yet been explored whether they specifically stabilize the native states relative to alternative folds. A two-piece version of the group I intron RNA from Tetrahymena is used here to show that the peripheral element P5abc binds to the native conformation of the rest of the RNA 50,000 times more tightly than it binds to a long-lived misfolded conformation. Thus, P5abc stabilizes the native conformation by ≈6 kcal/mol relative to this misfolded conformation. Further, activity measurements show that for the RNA lacking P5abc, the native conformation is only marginally preferred over the misfolded conformation (&lt;0.5 kcal/mol), indicating that the peripheral structure of this RNA is required to achieve a significant thermodynamic preference for the native state. Such "structural specificity" may be a general function of RNA peripheral domains.</description><subject>Animals</subject><subject>Architecture</subject><subject>Base Pairing</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Catalytic activity</subject><subject>DNA Footprinting</subject><subject>Gels</subject><subject>Kinetics</subject><subject>Mathematical constants</subject><subject>Models, Molecular</subject><subject>Native species</subject><subject>Nucleic Acid Conformation</subject><subject>Oligonucleotides</subject><subject>Protein folding</subject><subject>Protein refolding</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Stability - genetics</subject><subject>RNA, Catalytic - genetics</subject><subject>Tetrahymena</subject><subject>Tetrahymena - genetics</subject><subject>Thermodynamics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEcxYModq2evYgEDwUP0-Y7-TW5CGVba6GoWD2HTCaxs8xOpklG3P_eLLt01UtP30A-7-V98xB6DeQUiKRn02jSKeEEmGqA1E_QAoiCSjBFnqIFIbWsGlazI_QipRUhRPGGPEdHIMpRMbpAF7c5zjbP0Qz4dnK2973t8wYvw-hdjK7D7QYbfBXDPOFr_O3zOf7qYj_dua3icnBrN-aX6Jk3Q3Kv9vMY_fh4-X35qbr5cnW9PL-pLFc8V-CdpA2DDqynFhwH6YXvSFMW4IaxVjjhuqZjClSnPKOUtdJ0prON9y319Bh92PlOc7t2nS1PlxR6iv3axI0Optf_3oz9nf4ZfmkAKamQxeBkbxDD_exS1us-WTcMZnRhTlqUKLKW_FEQJG84CFXAd_-BqzDHsfyCrksrQGsJBTrbQTaGlKLzD5GB6G2PetujPvRYFG__3vTA74srAN4DW-XBrta1KgOkKMj7RxDt52HI7ncu7Jsdu0o5xAeYUskVU_QPrcm7EQ</recordid><startdate>20050719</startdate><enddate>20050719</enddate><creator>Johnson, Travis H.</creator><creator>Tijerina, Pilar</creator><creator>Chadee, Amanda B.</creator><creator>Herschlag, Daniel</creator><creator>Russell, Rick</creator><creator>Doudna, Jennifer A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050719</creationdate><title>Structural Specificity Conferred by a Group I RNA Peripheral Element</title><author>Johnson, Travis H. ; Tijerina, Pilar ; Chadee, Amanda B. ; Herschlag, Daniel ; Russell, Rick ; Doudna, Jennifer A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-1fe73841d1cf3c1e517f6fd080505a44b6e6ed8d4919d9f4334b7adadc8ffb3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Architecture</topic><topic>Base Pairing</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Catalytic activity</topic><topic>DNA Footprinting</topic><topic>Gels</topic><topic>Kinetics</topic><topic>Mathematical constants</topic><topic>Models, Molecular</topic><topic>Native species</topic><topic>Nucleic Acid Conformation</topic><topic>Oligonucleotides</topic><topic>Protein folding</topic><topic>Protein refolding</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Stability - genetics</topic><topic>RNA, Catalytic - genetics</topic><topic>Tetrahymena</topic><topic>Tetrahymena - genetics</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Travis H.</creatorcontrib><creatorcontrib>Tijerina, Pilar</creatorcontrib><creatorcontrib>Chadee, Amanda B.</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><creatorcontrib>Russell, Rick</creatorcontrib><creatorcontrib>Doudna, Jennifer A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Travis H.</au><au>Tijerina, Pilar</au><au>Chadee, Amanda B.</au><au>Herschlag, Daniel</au><au>Russell, Rick</au><au>Doudna, Jennifer A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Specificity Conferred by a Group I RNA Peripheral Element</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-07-19</date><risdate>2005</risdate><volume>102</volume><issue>29</issue><spage>10176</spage><epage>10181</epage><pages>10176-10181</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Like proteins, structured RNAs must specify a native conformation that is more stable than all other possible conformations. Local structure is much more stable for RNA than for protein, so it is likely that the principal challenge for RNA is to stabilize the native structure relative to misfolded and partially folded intermediates rather than unfolded structures. Many structured RNAs contain peripheral structural elements, which surround the core elements. Although it is clear that peripheral elements stabilize structure within RNAs that contain them, it has not yet been explored whether they specifically stabilize the native states relative to alternative folds. A two-piece version of the group I intron RNA from Tetrahymena is used here to show that the peripheral element P5abc binds to the native conformation of the rest of the RNA 50,000 times more tightly than it binds to a long-lived misfolded conformation. Thus, P5abc stabilizes the native conformation by ≈6 kcal/mol relative to this misfolded conformation. Further, activity measurements show that for the RNA lacking P5abc, the native conformation is only marginally preferred over the misfolded conformation (&lt;0.5 kcal/mol), indicating that the peripheral structure of this RNA is required to achieve a significant thermodynamic preference for the native state. Such "structural specificity" may be a general function of RNA peripheral domains.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16009943</pmid><doi>10.1073/pnas.0501498102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-07, Vol.102 (29), p.10176-10181
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_17585169
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Architecture
Base Pairing
Biochemistry
Biological Sciences
Biophysics
Catalytic activity
DNA Footprinting
Gels
Kinetics
Mathematical constants
Models, Molecular
Native species
Nucleic Acid Conformation
Oligonucleotides
Protein folding
Protein refolding
Ribonucleic acid
RNA
RNA Stability - genetics
RNA, Catalytic - genetics
Tetrahymena
Tetrahymena - genetics
Thermodynamics
title Structural Specificity Conferred by a Group I RNA Peripheral Element
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Specificity%20Conferred%20by%20a%20Group%20I%20RNA%20Peripheral%20Element&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Johnson,%20Travis%20H.&rft.date=2005-07-19&rft.volume=102&rft.issue=29&rft.spage=10176&rft.epage=10181&rft.pages=10176-10181&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0501498102&rft_dat=%3Cjstor_proqu%3E3375949%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201413271&rft_id=info:pmid/16009943&rft_jstor_id=3375949&rfr_iscdi=true