COMPARISON OF TYPE I ERROR RATES FOR STATISTICAL ANALYSES OF RESOURCE SELECTION
During the past decade, compositional analysis (CA) has been used widely in wildlife habitat and resource selection studies. However, critical aspects of CA have not been tested for potential systematic biases such as an inflated Type I error rate. We used computer-simulated data based on known habi...
Gespeichert in:
Veröffentlicht in: | The Journal of wildlife management 2004-01, Vol.68 (1), p.206-212 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 212 |
---|---|
container_issue | 1 |
container_start_page | 206 |
container_title | The Journal of wildlife management |
container_volume | 68 |
creator | BINGHAM, RALPH L BRENNAN, LEONARD A |
description | During the past decade, compositional analysis (CA) has been used widely in wildlife habitat and resource selection studies. However, critical aspects of CA have not been tested for potential systematic biases such as an inflated Type I error rate. We used computer-simulated data based on known habitat use and availability parameters and found that compositional analysis could result in large Type I error rates. These inflated Type I errors occurred when available habitat types that were not used by animals were included in the resource selection analysis. These error rates arise because of the recommended substitution of an arbitrarily small value, such as 0.01, for each 0% utilization value for any animal. We observed, based on a series of computer-simulation analyses, that progressively larger Type I error rates in CA resulted from substituting progressively smaller positive values for each 0% utilization of a habitat category. The Type I error rate in CA also increased when the number of experimental animals was increased for a fixed number of observations per animal. Two other resource selection analysis methods (Neu et al. [1974] and the Euclidean distance-based analysis [DA] method of Conner and Plowman [2001]) did not exhibit inflated Type I error rates for the same simulated data. Our computer simulations cause us to question the veracity of CA habitat selection analyses that include habitat patches or categories with relatively small areas of availabilities and 0% use. |
doi_str_mv | 10.2193/0022-541X(2004)068[0206:COTIER]2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_17582669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3803783</jstor_id><sourcerecordid>3803783</sourcerecordid><originalsourceid>FETCH-LOGICAL-b5355-d9cf0051b41c6bafcbb0913e7cc86888dad11ed3130e0c1bade7b56df275b6d73</originalsourceid><addsrcrecordid>eNqdkF1v0zAUhi0EEqXwD7iIuEBwke7Yrj8CV1Fws6CsnpJMZULIyocjtXTNSFpt-_c4CuoFl7vykd7nvPJ5ELrAsCA4oBcAhPhsiX98IgDLz8DlTyDAv0S6SFT2iyxgEemv5AWaOVr4RGLxEs3OW6_Rm2HYAVCMJZ8hHemr6zBLcr329Morbq-Vl3gqy3TmZWGhcm_lprwIiyQvkihMvXAdpre5CxyeqVzfZJHycpWqqEj0-i161Zb7wb77987RzUoV0aWf6nhc9ytGGfOboG4BGK6WuOZV2dZVBQGmVtS15FLKpmwwtg3FFCzUuCobKyrGm5YIVvFG0Dn6OPXe992fkx2O5m471Ha_Lw-2Ow0GCyYJ54EDP_wH7rpTf3B_M4QuMQ4Ilw6KJ6juu2HobWvu--1d2T8ZDGa0bkZ_ZvRnRuvGWTejdTNZN8SAG13jHKVT08N2b5-eW2O-b65iAczVvZ_qdsOx6891VAIVkrrYn-LtcLSP57jsfxsuqGBms45NDJvL-FvEDTheTXy17bqDffaVfwGSerTX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>234119268</pqid></control><display><type>article</type><title>COMPARISON OF TYPE I ERROR RATES FOR STATISTICAL ANALYSES OF RESOURCE SELECTION</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Jstor Complete Legacy</source><creator>BINGHAM, RALPH L ; BRENNAN, LEONARD A</creator><contributor>Lubow</contributor><creatorcontrib>BINGHAM, RALPH L ; BRENNAN, LEONARD A ; Lubow</creatorcontrib><description>During the past decade, compositional analysis (CA) has been used widely in wildlife habitat and resource selection studies. However, critical aspects of CA have not been tested for potential systematic biases such as an inflated Type I error rate. We used computer-simulated data based on known habitat use and availability parameters and found that compositional analysis could result in large Type I error rates. These inflated Type I errors occurred when available habitat types that were not used by animals were included in the resource selection analysis. These error rates arise because of the recommended substitution of an arbitrarily small value, such as 0.01, for each 0% utilization value for any animal. We observed, based on a series of computer-simulation analyses, that progressively larger Type I error rates in CA resulted from substituting progressively smaller positive values for each 0% utilization of a habitat category. The Type I error rate in CA also increased when the number of experimental animals was increased for a fixed number of observations per animal. Two other resource selection analysis methods (Neu et al. [1974] and the Euclidean distance-based analysis [DA] method of Conner and Plowman [2001]) did not exhibit inflated Type I error rates for the same simulated data. Our computer simulations cause us to question the veracity of CA habitat selection analyses that include habitat patches or categories with relatively small areas of availabilities and 0% use.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.2193/0022-541X(2004)068[0206:COTIER]2.0.CO;2</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; compositional analysis ; CONTENTS ; Errors ; Euclidean distance ; Euclidean space ; Habitat availability ; Habitat selection ; Habitat utilization ; Habitats ; known parameters ; Monte Carlo simulation ; Monte Carlo simulations ; Music analysis ; Observational research ; P values ; Resource analysis ; resource selection analysis ; Statistical analysis ; Type I error rate ; Wildlife ; Wildlife habitats ; Wildlife management</subject><ispartof>The Journal of wildlife management, 2004-01, Vol.68 (1), p.206-212</ispartof><rights>The Wildlife Society</rights><rights>Copyright 2004 The Wildlife Society</rights><rights>2004 The Wildlife Society</rights><rights>Copyright Wildlife Society Jan 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b5355-d9cf0051b41c6bafcbb0913e7cc86888dad11ed3130e0c1bade7b56df275b6d73</citedby><cites>FETCH-LOGICAL-b5355-d9cf0051b41c6bafcbb0913e7cc86888dad11ed3130e0c1bade7b56df275b6d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3803783$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3803783$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,800,1412,27905,27906,45555,45556,57998,58231</link.rule.ids></links><search><contributor>Lubow</contributor><creatorcontrib>BINGHAM, RALPH L</creatorcontrib><creatorcontrib>BRENNAN, LEONARD A</creatorcontrib><title>COMPARISON OF TYPE I ERROR RATES FOR STATISTICAL ANALYSES OF RESOURCE SELECTION</title><title>The Journal of wildlife management</title><description>During the past decade, compositional analysis (CA) has been used widely in wildlife habitat and resource selection studies. However, critical aspects of CA have not been tested for potential systematic biases such as an inflated Type I error rate. We used computer-simulated data based on known habitat use and availability parameters and found that compositional analysis could result in large Type I error rates. These inflated Type I errors occurred when available habitat types that were not used by animals were included in the resource selection analysis. These error rates arise because of the recommended substitution of an arbitrarily small value, such as 0.01, for each 0% utilization value for any animal. We observed, based on a series of computer-simulation analyses, that progressively larger Type I error rates in CA resulted from substituting progressively smaller positive values for each 0% utilization of a habitat category. The Type I error rate in CA also increased when the number of experimental animals was increased for a fixed number of observations per animal. Two other resource selection analysis methods (Neu et al. [1974] and the Euclidean distance-based analysis [DA] method of Conner and Plowman [2001]) did not exhibit inflated Type I error rates for the same simulated data. Our computer simulations cause us to question the veracity of CA habitat selection analyses that include habitat patches or categories with relatively small areas of availabilities and 0% use.</description><subject>Animals</subject><subject>compositional analysis</subject><subject>CONTENTS</subject><subject>Errors</subject><subject>Euclidean distance</subject><subject>Euclidean space</subject><subject>Habitat availability</subject><subject>Habitat selection</subject><subject>Habitat utilization</subject><subject>Habitats</subject><subject>known parameters</subject><subject>Monte Carlo simulation</subject><subject>Monte Carlo simulations</subject><subject>Music analysis</subject><subject>Observational research</subject><subject>P values</subject><subject>Resource analysis</subject><subject>resource selection analysis</subject><subject>Statistical analysis</subject><subject>Type I error rate</subject><subject>Wildlife</subject><subject>Wildlife habitats</subject><subject>Wildlife management</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqdkF1v0zAUhi0EEqXwD7iIuEBwke7Yrj8CV1Fws6CsnpJMZULIyocjtXTNSFpt-_c4CuoFl7vykd7nvPJ5ELrAsCA4oBcAhPhsiX98IgDLz8DlTyDAv0S6SFT2iyxgEemv5AWaOVr4RGLxEs3OW6_Rm2HYAVCMJZ8hHemr6zBLcr329Morbq-Vl3gqy3TmZWGhcm_lprwIiyQvkihMvXAdpre5CxyeqVzfZJHycpWqqEj0-i161Zb7wb77987RzUoV0aWf6nhc9ytGGfOboG4BGK6WuOZV2dZVBQGmVtS15FLKpmwwtg3FFCzUuCobKyrGm5YIVvFG0Dn6OPXe992fkx2O5m471Ha_Lw-2Ow0GCyYJ54EDP_wH7rpTf3B_M4QuMQ4Ilw6KJ6juu2HobWvu--1d2T8ZDGa0bkZ_ZvRnRuvGWTejdTNZN8SAG13jHKVT08N2b5-eW2O-b65iAczVvZ_qdsOx6891VAIVkrrYn-LtcLSP57jsfxsuqGBms45NDJvL-FvEDTheTXy17bqDffaVfwGSerTX</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>BINGHAM, RALPH L</creator><creator>BRENNAN, LEONARD A</creator><general>Blackwell Publishing Ltd</general><general>The Wildlife Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>7X2</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope></search><sort><creationdate>200401</creationdate><title>COMPARISON OF TYPE I ERROR RATES FOR STATISTICAL ANALYSES OF RESOURCE SELECTION</title><author>BINGHAM, RALPH L ; BRENNAN, LEONARD A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b5355-d9cf0051b41c6bafcbb0913e7cc86888dad11ed3130e0c1bade7b56df275b6d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>compositional analysis</topic><topic>CONTENTS</topic><topic>Errors</topic><topic>Euclidean distance</topic><topic>Euclidean space</topic><topic>Habitat availability</topic><topic>Habitat selection</topic><topic>Habitat utilization</topic><topic>Habitats</topic><topic>known parameters</topic><topic>Monte Carlo simulation</topic><topic>Monte Carlo simulations</topic><topic>Music analysis</topic><topic>Observational research</topic><topic>P values</topic><topic>Resource analysis</topic><topic>resource selection analysis</topic><topic>Statistical analysis</topic><topic>Type I error rate</topic><topic>Wildlife</topic><topic>Wildlife habitats</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BINGHAM, RALPH L</creatorcontrib><creatorcontrib>BRENNAN, LEONARD A</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BINGHAM, RALPH L</au><au>BRENNAN, LEONARD A</au><au>Lubow</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COMPARISON OF TYPE I ERROR RATES FOR STATISTICAL ANALYSES OF RESOURCE SELECTION</atitle><jtitle>The Journal of wildlife management</jtitle><date>2004-01</date><risdate>2004</risdate><volume>68</volume><issue>1</issue><spage>206</spage><epage>212</epage><pages>206-212</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>During the past decade, compositional analysis (CA) has been used widely in wildlife habitat and resource selection studies. However, critical aspects of CA have not been tested for potential systematic biases such as an inflated Type I error rate. We used computer-simulated data based on known habitat use and availability parameters and found that compositional analysis could result in large Type I error rates. These inflated Type I errors occurred when available habitat types that were not used by animals were included in the resource selection analysis. These error rates arise because of the recommended substitution of an arbitrarily small value, such as 0.01, for each 0% utilization value for any animal. We observed, based on a series of computer-simulation analyses, that progressively larger Type I error rates in CA resulted from substituting progressively smaller positive values for each 0% utilization of a habitat category. The Type I error rate in CA also increased when the number of experimental animals was increased for a fixed number of observations per animal. Two other resource selection analysis methods (Neu et al. [1974] and the Euclidean distance-based analysis [DA] method of Conner and Plowman [2001]) did not exhibit inflated Type I error rates for the same simulated data. Our computer simulations cause us to question the veracity of CA habitat selection analyses that include habitat patches or categories with relatively small areas of availabilities and 0% use.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.2193/0022-541X(2004)068[0206:COTIER]2.0.CO;2</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-541X |
ispartof | The Journal of wildlife management, 2004-01, Vol.68 (1), p.206-212 |
issn | 0022-541X 1937-2817 |
language | eng |
recordid | cdi_proquest_miscellaneous_17582669 |
source | Wiley Online Library Journals Frontfile Complete; Jstor Complete Legacy |
subjects | Animals compositional analysis CONTENTS Errors Euclidean distance Euclidean space Habitat availability Habitat selection Habitat utilization Habitats known parameters Monte Carlo simulation Monte Carlo simulations Music analysis Observational research P values Resource analysis resource selection analysis Statistical analysis Type I error rate Wildlife Wildlife habitats Wildlife management |
title | COMPARISON OF TYPE I ERROR RATES FOR STATISTICAL ANALYSES OF RESOURCE SELECTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COMPARISON%20OF%20TYPE%20I%20ERROR%20RATES%20FOR%20STATISTICAL%20ANALYSES%20OF%20RESOURCE%20SELECTION&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=BINGHAM,%20RALPH%20L&rft.date=2004-01&rft.volume=68&rft.issue=1&rft.spage=206&rft.epage=212&rft.pages=206-212&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.2193/0022-541X(2004)068%5B0206:COTIER%5D2.0.CO;2&rft_dat=%3Cjstor_proqu%3E3803783%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=234119268&rft_id=info:pmid/&rft_jstor_id=3803783&rfr_iscdi=true |