Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers

One refined and two crude glycerol (from biodiesel production) samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. A batch culture fermentation protocol including 1% glycerol and an aeration rate of 3 standard liters per minute proved best for PHB s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Oil Chemists' Society 2011-07, Vol.88 (7), p.949-959
Hauptverfasser: Ashby, Richard D, Solaiman, Daniel K.Y, Strahan, Gary D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 959
container_issue 7
container_start_page 949
container_title Journal of the American Oil Chemists' Society
container_volume 88
creator Ashby, Richard D
Solaiman, Daniel K.Y
Strahan, Gary D
description One refined and two crude glycerol (from biodiesel production) samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. A batch culture fermentation protocol including 1% glycerol and an aeration rate of 3 standard liters per minute proved best for PHB synthesis (av. yield = 1.0 ± 0.2 g/L at 48 h) and efficient glycerol utilization. PHB molecular weights decreased as MeOH concentration increased. Refined glycerol resulted in PHB polymers with number average molecular weights (M n) of 314,000 g/mol which decreased by 17 and 90% as MeOH media concentrations increased to
doi_str_mv 10.1007/s11746-011-1755-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1758246347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2409290971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5169-95eb75e33af0e42a66096c842a8f18f7e3025057c36c8dead57412b73e1250fa3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhSNEJUrpD-CEhYRUDqGeOI6dY7UqFKlSD23PluMdb11l48WTCMKvx1EqqDjAaUbj7z298RTFW-CfgHN1TgCqbkoOUIKSsmxeFMcgpS5bIeDls_5V8ZrokXOuRSWPi_nS--ACDiObxtCHn3YMcWDRM5emLbJdPztMsWeWmMe0z-BK0NTRmOyILAxsfEBG85ALBVrEh9jPZ6J8mLcp_pi7aZwX9CPrQlye9pjoTXHkbU94-lRPivvPl3ebq_L65svXzcV16SQ0bdlK7JREIaznWFe2aXjbOJ077UF7hYJXkkvlRJ5u0W6lqqHqlEDIc2_FSXG2-h5S_DYhjWYfyGHf2wHjRCZ_l67qRtQqo-__Qh_jlIaczmjVSuCtbDIEK-RSJErozSGFvU2zAW6WW5j1FibfYjGXZtF8eDK25Gzvkx1coN_CqhZcai4yp1bue-hx_r-xubjZ3PK2brOyWpWURcMO05_o_4r1bhV5G43dpRzp_rbiIDjkTTVU4hczdrQe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879510956</pqid></control><display><type>article</type><title>Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Ashby, Richard D ; Solaiman, Daniel K.Y ; Strahan, Gary D</creator><creatorcontrib>Ashby, Richard D ; Solaiman, Daniel K.Y ; Strahan, Gary D</creatorcontrib><description>One refined and two crude glycerol (from biodiesel production) samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. A batch culture fermentation protocol including 1% glycerol and an aeration rate of 3 standard liters per minute proved best for PHB synthesis (av. yield = 1.0 ± 0.2 g/L at 48 h) and efficient glycerol utilization. PHB molecular weights decreased as MeOH concentration increased. Refined glycerol resulted in PHB polymers with number average molecular weights (M n) of 314,000 g/mol which decreased by 17 and 90% as MeOH media concentrations increased to &lt;0.005 and 0.85%, respectively. Proton (1H) NMR demonstrated the presence of glycerol- and methoxy-based end-capping, which was confirmed by 1H diffusion experiments (DOSY analyses). NMR diffusion analyses of the PHB polymers established their diffusivities, and confirmed that their relative molecular sizes were dependent on the impurities in the glycerol. In addition, DOSY analyses indicated that each end-capped PHB polymer and the glycerol or methoxy groups bound to it had the same diffusion constants, demonstrating that they migrated together as covalent complexes. Non-covalent complexation was eliminated by physically mixing free glycerol with PHB synthesized from oleic acid; their respective diffusivities were notably faster.</description><identifier>ISSN: 1558-9331</identifier><identifier>ISSN: 0003-021X</identifier><identifier>EISSN: 1558-9331</identifier><identifier>DOI: 10.1007/s11746-011-1755-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Agriculture ; Bacteria ; biodiesel ; Biological and medical sciences ; Biomaterials ; Biopolymers ; Biosynthesis ; Biotechnology ; Chemistry ; Chemistry and Materials Science ; diffusion ; Diffusion constants ; End‐capping ; Fat industries ; Fermentation ; Food industries ; Food Science ; Fundamental and applied biological sciences. Psychology ; Glycerol ; Industrial Chemistry/Chemical Engineering ; industrial microbiology ; Microbiology ; molecular weight ; nuclear magnetic resonance spectroscopy ; oleic acid ; Original Paper ; Poly(3‐hydroxybutyrate) ; Polyhydroxybutyrate ; Polymers ; Pseudomonas oleovorans</subject><ispartof>Journal of the American Oil Chemists' Society, 2011-07, Vol.88 (7), p.949-959</ispartof><rights>AOCS (outside the USA) 2011</rights><rights>2011 American Oil Chemists' Society (AOCS)</rights><rights>2015 INIST-CNRS</rights><rights>AOCS 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5169-95eb75e33af0e42a66096c842a8f18f7e3025057c36c8dead57412b73e1250fa3</citedby><cites>FETCH-LOGICAL-c5169-95eb75e33af0e42a66096c842a8f18f7e3025057c36c8dead57412b73e1250fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11746-011-1755-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11746-011-1755-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,41475,42544,45561,45562,51306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24305803$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ashby, Richard D</creatorcontrib><creatorcontrib>Solaiman, Daniel K.Y</creatorcontrib><creatorcontrib>Strahan, Gary D</creatorcontrib><title>Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers</title><title>Journal of the American Oil Chemists' Society</title><addtitle>J Am Oil Chem Soc</addtitle><description>One refined and two crude glycerol (from biodiesel production) samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. A batch culture fermentation protocol including 1% glycerol and an aeration rate of 3 standard liters per minute proved best for PHB synthesis (av. yield = 1.0 ± 0.2 g/L at 48 h) and efficient glycerol utilization. PHB molecular weights decreased as MeOH concentration increased. Refined glycerol resulted in PHB polymers with number average molecular weights (M n) of 314,000 g/mol which decreased by 17 and 90% as MeOH media concentrations increased to &lt;0.005 and 0.85%, respectively. Proton (1H) NMR demonstrated the presence of glycerol- and methoxy-based end-capping, which was confirmed by 1H diffusion experiments (DOSY analyses). NMR diffusion analyses of the PHB polymers established their diffusivities, and confirmed that their relative molecular sizes were dependent on the impurities in the glycerol. In addition, DOSY analyses indicated that each end-capped PHB polymer and the glycerol or methoxy groups bound to it had the same diffusion constants, demonstrating that they migrated together as covalent complexes. Non-covalent complexation was eliminated by physically mixing free glycerol with PHB synthesized from oleic acid; their respective diffusivities were notably faster.</description><subject>Agriculture</subject><subject>Bacteria</subject><subject>biodiesel</subject><subject>Biological and medical sciences</subject><subject>Biomaterials</subject><subject>Biopolymers</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>diffusion</subject><subject>Diffusion constants</subject><subject>End‐capping</subject><subject>Fat industries</subject><subject>Fermentation</subject><subject>Food industries</subject><subject>Food Science</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>industrial microbiology</subject><subject>Microbiology</subject><subject>molecular weight</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>oleic acid</subject><subject>Original Paper</subject><subject>Poly(3‐hydroxybutyrate)</subject><subject>Polyhydroxybutyrate</subject><subject>Polymers</subject><subject>Pseudomonas oleovorans</subject><issn>1558-9331</issn><issn>0003-021X</issn><issn>1558-9331</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUFv1DAQhSNEJUrpD-CEhYRUDqGeOI6dY7UqFKlSD23PluMdb11l48WTCMKvx1EqqDjAaUbj7z298RTFW-CfgHN1TgCqbkoOUIKSsmxeFMcgpS5bIeDls_5V8ZrokXOuRSWPi_nS--ACDiObxtCHn3YMcWDRM5emLbJdPztMsWeWmMe0z-BK0NTRmOyILAxsfEBG85ALBVrEh9jPZ6J8mLcp_pi7aZwX9CPrQlye9pjoTXHkbU94-lRPivvPl3ebq_L65svXzcV16SQ0bdlK7JREIaznWFe2aXjbOJ077UF7hYJXkkvlRJ5u0W6lqqHqlEDIc2_FSXG2-h5S_DYhjWYfyGHf2wHjRCZ_l67qRtQqo-__Qh_jlIaczmjVSuCtbDIEK-RSJErozSGFvU2zAW6WW5j1FibfYjGXZtF8eDK25Gzvkx1coN_CqhZcai4yp1bue-hx_r-xubjZ3PK2brOyWpWURcMO05_o_4r1bhV5G43dpRzp_rbiIDjkTTVU4hczdrQe</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Ashby, Richard D</creator><creator>Solaiman, Daniel K.Y</creator><creator>Strahan, Gary D</creator><general>Springer-Verlag</general><general>Springe-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>201107</creationdate><title>Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers</title><author>Ashby, Richard D ; Solaiman, Daniel K.Y ; Strahan, Gary D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5169-95eb75e33af0e42a66096c842a8f18f7e3025057c36c8dead57412b73e1250fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agriculture</topic><topic>Bacteria</topic><topic>biodiesel</topic><topic>Biological and medical sciences</topic><topic>Biomaterials</topic><topic>Biopolymers</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>diffusion</topic><topic>Diffusion constants</topic><topic>End‐capping</topic><topic>Fat industries</topic><topic>Fermentation</topic><topic>Food industries</topic><topic>Food Science</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>industrial microbiology</topic><topic>Microbiology</topic><topic>molecular weight</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>oleic acid</topic><topic>Original Paper</topic><topic>Poly(3‐hydroxybutyrate)</topic><topic>Polyhydroxybutyrate</topic><topic>Polymers</topic><topic>Pseudomonas oleovorans</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashby, Richard D</creatorcontrib><creatorcontrib>Solaiman, Daniel K.Y</creatorcontrib><creatorcontrib>Strahan, Gary D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of the American Oil Chemists' Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashby, Richard D</au><au>Solaiman, Daniel K.Y</au><au>Strahan, Gary D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers</atitle><jtitle>Journal of the American Oil Chemists' Society</jtitle><stitle>J Am Oil Chem Soc</stitle><date>2011-07</date><risdate>2011</risdate><volume>88</volume><issue>7</issue><spage>949</spage><epage>959</epage><pages>949-959</pages><issn>1558-9331</issn><issn>0003-021X</issn><eissn>1558-9331</eissn><abstract>One refined and two crude glycerol (from biodiesel production) samples were utilized to produce poly(3-hydroxybutyrate) (PHB) by Pseudomonas oleovorans NRRL B-14682. A batch culture fermentation protocol including 1% glycerol and an aeration rate of 3 standard liters per minute proved best for PHB synthesis (av. yield = 1.0 ± 0.2 g/L at 48 h) and efficient glycerol utilization. PHB molecular weights decreased as MeOH concentration increased. Refined glycerol resulted in PHB polymers with number average molecular weights (M n) of 314,000 g/mol which decreased by 17 and 90% as MeOH media concentrations increased to &lt;0.005 and 0.85%, respectively. Proton (1H) NMR demonstrated the presence of glycerol- and methoxy-based end-capping, which was confirmed by 1H diffusion experiments (DOSY analyses). NMR diffusion analyses of the PHB polymers established their diffusivities, and confirmed that their relative molecular sizes were dependent on the impurities in the glycerol. In addition, DOSY analyses indicated that each end-capped PHB polymer and the glycerol or methoxy groups bound to it had the same diffusion constants, demonstrating that they migrated together as covalent complexes. Non-covalent complexation was eliminated by physically mixing free glycerol with PHB synthesized from oleic acid; their respective diffusivities were notably faster.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11746-011-1755-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1558-9331
ispartof Journal of the American Oil Chemists' Society, 2011-07, Vol.88 (7), p.949-959
issn 1558-9331
0003-021X
1558-9331
language eng
recordid cdi_proquest_miscellaneous_1758246347
source Wiley Online Library Journals Frontfile Complete; Springer Nature - Complete Springer Journals
subjects Agriculture
Bacteria
biodiesel
Biological and medical sciences
Biomaterials
Biopolymers
Biosynthesis
Biotechnology
Chemistry
Chemistry and Materials Science
diffusion
Diffusion constants
End‐capping
Fat industries
Fermentation
Food industries
Food Science
Fundamental and applied biological sciences. Psychology
Glycerol
Industrial Chemistry/Chemical Engineering
industrial microbiology
Microbiology
molecular weight
nuclear magnetic resonance spectroscopy
oleic acid
Original Paper
Poly(3‐hydroxybutyrate)
Polyhydroxybutyrate
Polymers
Pseudomonas oleovorans
title Efficient utilization of crude glycerol as fermentation substrate in the synthesis of poly(3-hydroxybutyrate) biopolymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20utilization%20of%20crude%20glycerol%20as%20fermentation%20substrate%20in%20the%20synthesis%20of%20poly(3-hydroxybutyrate)%20biopolymers&rft.jtitle=Journal%20of%20the%20American%20Oil%20Chemists'%20Society&rft.au=Ashby,%20Richard%20D&rft.date=2011-07&rft.volume=88&rft.issue=7&rft.spage=949&rft.epage=959&rft.pages=949-959&rft.issn=1558-9331&rft.eissn=1558-9331&rft_id=info:doi/10.1007/s11746-011-1755-6&rft_dat=%3Cproquest_cross%3E2409290971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879510956&rft_id=info:pmid/&rfr_iscdi=true