Understanding Amazonian fluvial rias based on a Late Pleistocene-Holocene analog

Fluvial rias are elongated lakes at tributary mouths that can reach dozens of kilometers in length, constituting one of the most remarkable features in the Amazonian landscape. Thus far, definitive data which documents the genesis of fluvial rias have not been published. The main goal of this work w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth surface processes and landforms 2015-03, Vol.40 (3), p.285-292
Hauptverfasser: Bertani, Thiago C., Rossetti, Dilce F., Hayakawa, Ericson H., Cohen, Marcelo C. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluvial rias are elongated lakes at tributary mouths that can reach dozens of kilometers in length, constituting one of the most remarkable features in the Amazonian landscape. Thus far, definitive data which documents the genesis of fluvial rias have not been published. The main goal of this work was to integrate morphological, sedimentological and chronological information in order to characterize fluvial paleorias in the interfluve of the Purus and Madeira Rivers and discuss the most likely hypothesis for their genesis. These paleorias were first observed through remote sensing imagery as several elongated and interconnecting belts of open vegetation that are in sharp contact with the surrounding dense forest. The belts are branched and form a dendritic pattern similar to many modern drainage networks. The sedimentary record of these belts revealed the prevalence of sharp‐based sandstones and mudstones arranged into fining‐upward successions, which are compatible with deposition within channels. Active channel and abandoned channel deposits were recognized. These are topped by continuous mudstones related to rapid channel abandonment and formation of a low energy basin or ria environment. Radiocarbon dating of these deposits recorded only Late Pleistocene and Holocene ages ranging from 21 547–22 285 cal yr bp to 5928–6124 cal yr bp. This chronology for sediment deposition is not compatible with the hypothesis of Amazonian rias being formed by fluvial erosion during the Last Glaciation Maximum low sea level, with sediment accumulation during the subsequent Holocene transgression. Instead, the studied paleorias record previous tributaries of the Madeira River that became abandoned as the position of this river shifted southeastward and its interfluve tilted northward, inverting the drainage systems. Therefore, a neotectonic origin of some Amazonian paleorias seems most likely. This hypothesis should be considered in further investigations aiming at understanding the origin of numerous modern fluvial rias that typify the Amazonian landscape. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0197-9337
1096-9837
DOI:10.1002/esp.3629