RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells

Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2000-10, Vol.88 (1), p.44-52
Hauptverfasser: Martínez‐Lacaci, Isabel, Kannan, Subha, De Santis, Marta, Bianco, Caterina, Kim, Nancy, Wallace‐Jones, Brenda, Ebert, Andreas D., Wechselberger, Christian, Salomon, David S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 44
container_title International journal of cancer
container_volume 88
creator Martínez‐Lacaci, Isabel
Kannan, Subha
De Santis, Marta
Bianco, Caterina
Kim, Nancy
Wallace‐Jones, Brenda
Ebert, Andreas D.
Wechselberger, Christian
Salomon, David S.
description Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.
doi_str_mv 10.1002/1097-0215(20001001)88:1<44::AID-IJC7>3.0.CO;2-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17573478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17573478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-7df9635a1fdaf053096c73feffa65ae7b9402aac8d48dce9bcf36af72af2d60e3</originalsourceid><addsrcrecordid>eNqVkUuO1DAQhi0EYpqBKyAvEIJFGjt2YqdBSK3wajRSIx5rq9opTxvyaOKE0ew4AsfgXJwEhzQMCzasXHZ99ddv_YQozpacsfQRZ4VKWMqzByljLD7xh1qv-BMpV6v15lmyeV2qp2LJluX2cZroa2TxZ-I6WUQFligu8hNyK4SPcZpnTN4kJxHKUyn0gnx_u35Hhx7a4Lq-gcF3LbUwBgw0jGEA32JFwQ7-y9zrHMWDrzCyNT3vu4thT13sdz3t0eJhKqCtKNZ4NdH4oTvH9sfXb0elqHnouwF9Sz_5FgLSWO3HBlraQNNAfzltGfZY-7jGYl2H2-SGgzrgneN5Sj68eP6-fJWcbV9uyvVZYqWWKlGVK3KRAXcVOJaJ-FGrhEPnIM8A1a6QLAWwupK6sljsrBM5OJWCS6ucoTgl92fdaPDziGEwjQ-TA2ixG4PhKlNCKh3B7QzavguhR2cOvZ-sG87MFJ6ZojBTFOZ3eEZrw42UxsTwzBSeEYaZcmtSMynePa4edw1Wf-nNaUXg3hGAYKF2MTbrwxUnCy2UjNibGbvwNV7-j61_uPp1Fz8BbhLEnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17573478</pqid></control><display><type>article</type><title>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Martínez‐Lacaci, Isabel ; Kannan, Subha ; De Santis, Marta ; Bianco, Caterina ; Kim, Nancy ; Wallace‐Jones, Brenda ; Ebert, Andreas D. ; Wechselberger, Christian ; Salomon, David S.</creator><creatorcontrib>Martínez‐Lacaci, Isabel ; Kannan, Subha ; De Santis, Marta ; Bianco, Caterina ; Kim, Nancy ; Wallace‐Jones, Brenda ; Ebert, Andreas D. ; Wechselberger, Christian ; Salomon, David S.</creatorcontrib><description>Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/1097-0215(20001001)88:1&lt;44::AID-IJC7&gt;3.0.CO;2-8</identifier><identifier>PMID: 10962438</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - pharmacology ; Antibody Specificity ; Biological and medical sciences ; Breast - enzymology ; Breast - metabolism ; Breast - pathology ; Cell Line, Transformed ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - metabolism ; Cells, Cultured ; Enzyme Activation ; Enzyme Inhibitors - pharmacology ; Epidermal Growth Factor - metabolism ; Epidermal Growth Factor - pharmacokinetics ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; ErbB Receptors - physiology ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genes, ras - genetics ; Genes, ras - physiology ; Growth Inhibitors - pharmacology ; Ha-ras gene ; Humans ; MAP Kinase Signaling System - physiology ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase 1 - antagonists &amp; inhibitors ; Mitogen-Activated Protein Kinase 1 - biosynthesis ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors ; Mitogen-Activated Protein Kinases - biosynthesis ; Mitogen-Activated Protein Kinases - metabolism ; Molecular and cellular biology ; Phosphorylation ; Point Mutation ; Proto-Oncogene Proteins c-raf - genetics ; Proto-Oncogene Proteins c-raf - metabolism ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Subcellular Fractions - enzymology ; Substrate Specificity ; Transfection</subject><ispartof>International journal of cancer, 2000-10, Vol.88 (1), p.44-52</ispartof><rights>Published 2000 Wiley‐Liss, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4847-7df9635a1fdaf053096c73feffa65ae7b9402aac8d48dce9bcf36af72af2d60e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0215%2820001001%2988%3A1%3C44%3A%3AAID-IJC7%3E3.0.CO%3B2-8$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0215%2820001001%2988%3A1%3C44%3A%3AAID-IJC7%3E3.0.CO%3B2-8$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1498374$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10962438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez‐Lacaci, Isabel</creatorcontrib><creatorcontrib>Kannan, Subha</creatorcontrib><creatorcontrib>De Santis, Marta</creatorcontrib><creatorcontrib>Bianco, Caterina</creatorcontrib><creatorcontrib>Kim, Nancy</creatorcontrib><creatorcontrib>Wallace‐Jones, Brenda</creatorcontrib><creatorcontrib>Ebert, Andreas D.</creatorcontrib><creatorcontrib>Wechselberger, Christian</creatorcontrib><creatorcontrib>Salomon, David S.</creatorcontrib><title>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.</description><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibody Specificity</subject><subject>Biological and medical sciences</subject><subject>Breast - enzymology</subject><subject>Breast - metabolism</subject><subject>Breast - pathology</subject><subject>Cell Line, Transformed</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermal Growth Factor - pharmacokinetics</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>ErbB Receptors - physiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genes, ras - genetics</subject><subject>Genes, ras - physiology</subject><subject>Growth Inhibitors - pharmacology</subject><subject>Ha-ras gene</subject><subject>Humans</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase 1 - antagonists &amp; inhibitors</subject><subject>Mitogen-Activated Protein Kinase 1 - biosynthesis</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</subject><subject>Mitogen-Activated Protein Kinases - biosynthesis</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Phosphorylation</subject><subject>Point Mutation</subject><subject>Proto-Oncogene Proteins c-raf - genetics</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Subcellular Fractions - enzymology</subject><subject>Substrate Specificity</subject><subject>Transfection</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkUuO1DAQhi0EYpqBKyAvEIJFGjt2YqdBSK3wajRSIx5rq9opTxvyaOKE0ew4AsfgXJwEhzQMCzasXHZ99ddv_YQozpacsfQRZ4VKWMqzByljLD7xh1qv-BMpV6v15lmyeV2qp2LJluX2cZroa2TxZ-I6WUQFligu8hNyK4SPcZpnTN4kJxHKUyn0gnx_u35Hhx7a4Lq-gcF3LbUwBgw0jGEA32JFwQ7-y9zrHMWDrzCyNT3vu4thT13sdz3t0eJhKqCtKNZ4NdH4oTvH9sfXb0elqHnouwF9Sz_5FgLSWO3HBlraQNNAfzltGfZY-7jGYl2H2-SGgzrgneN5Sj68eP6-fJWcbV9uyvVZYqWWKlGVK3KRAXcVOJaJ-FGrhEPnIM8A1a6QLAWwupK6sljsrBM5OJWCS6ucoTgl92fdaPDziGEwjQ-TA2ixG4PhKlNCKh3B7QzavguhR2cOvZ-sG87MFJ6ZojBTFOZ3eEZrw42UxsTwzBSeEYaZcmtSMynePa4edw1Wf-nNaUXg3hGAYKF2MTbrwxUnCy2UjNibGbvwNV7-j61_uPp1Fz8BbhLEnQ</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Martínez‐Lacaci, Isabel</creator><creator>Kannan, Subha</creator><creator>De Santis, Marta</creator><creator>Bianco, Caterina</creator><creator>Kim, Nancy</creator><creator>Wallace‐Jones, Brenda</creator><creator>Ebert, Andreas D.</creator><creator>Wechselberger, Christian</creator><creator>Salomon, David S.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>20001001</creationdate><title>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</title><author>Martínez‐Lacaci, Isabel ; Kannan, Subha ; De Santis, Marta ; Bianco, Caterina ; Kim, Nancy ; Wallace‐Jones, Brenda ; Ebert, Andreas D. ; Wechselberger, Christian ; Salomon, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-7df9635a1fdaf053096c73feffa65ae7b9402aac8d48dce9bcf36af72af2d60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibody Specificity</topic><topic>Biological and medical sciences</topic><topic>Breast - enzymology</topic><topic>Breast - metabolism</topic><topic>Breast - pathology</topic><topic>Cell Line, Transformed</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermal Growth Factor - pharmacokinetics</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>ErbB Receptors - physiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genes, ras - genetics</topic><topic>Genes, ras - physiology</topic><topic>Growth Inhibitors - pharmacology</topic><topic>Ha-ras gene</topic><topic>Humans</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase 1 - antagonists &amp; inhibitors</topic><topic>Mitogen-Activated Protein Kinase 1 - biosynthesis</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinases - antagonists &amp; inhibitors</topic><topic>Mitogen-Activated Protein Kinases - biosynthesis</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Phosphorylation</topic><topic>Point Mutation</topic><topic>Proto-Oncogene Proteins c-raf - genetics</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Subcellular Fractions - enzymology</topic><topic>Substrate Specificity</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez‐Lacaci, Isabel</creatorcontrib><creatorcontrib>Kannan, Subha</creatorcontrib><creatorcontrib>De Santis, Marta</creatorcontrib><creatorcontrib>Bianco, Caterina</creatorcontrib><creatorcontrib>Kim, Nancy</creatorcontrib><creatorcontrib>Wallace‐Jones, Brenda</creatorcontrib><creatorcontrib>Ebert, Andreas D.</creatorcontrib><creatorcontrib>Wechselberger, Christian</creatorcontrib><creatorcontrib>Salomon, David S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez‐Lacaci, Isabel</au><au>Kannan, Subha</au><au>De Santis, Marta</au><au>Bianco, Caterina</au><au>Kim, Nancy</au><au>Wallace‐Jones, Brenda</au><au>Ebert, Andreas D.</au><au>Wechselberger, Christian</au><au>Salomon, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>88</volume><issue>1</issue><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>10962438</pmid><doi>10.1002/1097-0215(20001001)88:1&lt;44::AID-IJC7&gt;3.0.CO;2-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7136
ispartof International journal of cancer, 2000-10, Vol.88 (1), p.44-52
issn 0020-7136
1097-0215
language eng
recordid cdi_proquest_miscellaneous_17573478
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects Antibodies, Monoclonal - immunology
Antibodies, Monoclonal - pharmacology
Antibody Specificity
Biological and medical sciences
Breast - enzymology
Breast - metabolism
Breast - pathology
Cell Line, Transformed
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - metabolism
Cells, Cultured
Enzyme Activation
Enzyme Inhibitors - pharmacology
Epidermal Growth Factor - metabolism
Epidermal Growth Factor - pharmacokinetics
ErbB Receptors - genetics
ErbB Receptors - metabolism
ErbB Receptors - physiology
Female
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Genes, ras - genetics
Genes, ras - physiology
Growth Inhibitors - pharmacology
Ha-ras gene
Humans
MAP Kinase Signaling System - physiology
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors
Mitogen-Activated Protein Kinase 1 - biosynthesis
Mitogen-Activated Protein Kinase 1 - metabolism
Mitogen-Activated Protein Kinase 3
Mitogen-Activated Protein Kinases - antagonists & inhibitors
Mitogen-Activated Protein Kinases - biosynthesis
Mitogen-Activated Protein Kinases - metabolism
Molecular and cellular biology
Phosphorylation
Point Mutation
Proto-Oncogene Proteins c-raf - genetics
Proto-Oncogene Proteins c-raf - metabolism
Proto-Oncogene Proteins p21(ras) - genetics
Proto-Oncogene Proteins p21(ras) - metabolism
Subcellular Fractions - enzymology
Substrate Specificity
Transfection
title RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAS%20transformation%20causes%20sustained%20activation%20of%20epidermal%20growth%20factor%20receptor%20and%20elevation%20of%20mitogen%E2%80%90activated%20protein%20kinase%20in%20human%20mammary%20epithelial%20cells&rft.jtitle=International%20journal%20of%20cancer&rft.au=Mart%C3%ADnez%E2%80%90Lacaci,%20Isabel&rft.date=2000-10-01&rft.volume=88&rft.issue=1&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/1097-0215(20001001)88:1%3C44::AID-IJC7%3E3.0.CO;2-8&rft_dat=%3Cproquest_cross%3E17573478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17573478&rft_id=info:pmid/10962438&rfr_iscdi=true