RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells
Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR l...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2000-10, Vol.88 (1), p.44-52 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | International journal of cancer |
container_volume | 88 |
creator | Martínez‐Lacaci, Isabel Kannan, Subha De Santis, Marta Bianco, Caterina Kim, Nancy Wallace‐Jones, Brenda Ebert, Andreas D. Wechselberger, Christian Salomon, David S. |
description | Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/1097-0215(20001001)88:1<44::AID-IJC7>3.0.CO;2-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17573478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17573478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-7df9635a1fdaf053096c73feffa65ae7b9402aac8d48dce9bcf36af72af2d60e3</originalsourceid><addsrcrecordid>eNqVkUuO1DAQhi0EYpqBKyAvEIJFGjt2YqdBSK3wajRSIx5rq9opTxvyaOKE0ew4AsfgXJwEhzQMCzasXHZ99ddv_YQozpacsfQRZ4VKWMqzByljLD7xh1qv-BMpV6v15lmyeV2qp2LJluX2cZroa2TxZ-I6WUQFligu8hNyK4SPcZpnTN4kJxHKUyn0gnx_u35Hhx7a4Lq-gcF3LbUwBgw0jGEA32JFwQ7-y9zrHMWDrzCyNT3vu4thT13sdz3t0eJhKqCtKNZ4NdH4oTvH9sfXb0elqHnouwF9Sz_5FgLSWO3HBlraQNNAfzltGfZY-7jGYl2H2-SGgzrgneN5Sj68eP6-fJWcbV9uyvVZYqWWKlGVK3KRAXcVOJaJ-FGrhEPnIM8A1a6QLAWwupK6sljsrBM5OJWCS6ucoTgl92fdaPDziGEwjQ-TA2ixG4PhKlNCKh3B7QzavguhR2cOvZ-sG87MFJ6ZojBTFOZ3eEZrw42UxsTwzBSeEYaZcmtSMynePa4edw1Wf-nNaUXg3hGAYKF2MTbrwxUnCy2UjNibGbvwNV7-j61_uPp1Fz8BbhLEnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17573478</pqid></control><display><type>article</type><title>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Martínez‐Lacaci, Isabel ; Kannan, Subha ; De Santis, Marta ; Bianco, Caterina ; Kim, Nancy ; Wallace‐Jones, Brenda ; Ebert, Andreas D. ; Wechselberger, Christian ; Salomon, David S.</creator><creatorcontrib>Martínez‐Lacaci, Isabel ; Kannan, Subha ; De Santis, Marta ; Bianco, Caterina ; Kim, Nancy ; Wallace‐Jones, Brenda ; Ebert, Andreas D. ; Wechselberger, Christian ; Salomon, David S.</creatorcontrib><description>Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.</description><identifier>ISSN: 0020-7136</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/1097-0215(20001001)88:1<44::AID-IJC7>3.0.CO;2-8</identifier><identifier>PMID: 10962438</identifier><identifier>CODEN: IJCNAW</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - pharmacology ; Antibody Specificity ; Biological and medical sciences ; Breast - enzymology ; Breast - metabolism ; Breast - pathology ; Cell Line, Transformed ; Cell physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cell Transformation, Neoplastic - genetics ; Cell Transformation, Neoplastic - metabolism ; Cells, Cultured ; Enzyme Activation ; Enzyme Inhibitors - pharmacology ; Epidermal Growth Factor - metabolism ; Epidermal Growth Factor - pharmacokinetics ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; ErbB Receptors - physiology ; Female ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation ; Genes, ras - genetics ; Genes, ras - physiology ; Growth Inhibitors - pharmacology ; Ha-ras gene ; Humans ; MAP Kinase Signaling System - physiology ; mitogen-activated protein kinase ; Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors ; Mitogen-Activated Protein Kinase 1 - biosynthesis ; Mitogen-Activated Protein Kinase 1 - metabolism ; Mitogen-Activated Protein Kinase 3 ; Mitogen-Activated Protein Kinases - antagonists & inhibitors ; Mitogen-Activated Protein Kinases - biosynthesis ; Mitogen-Activated Protein Kinases - metabolism ; Molecular and cellular biology ; Phosphorylation ; Point Mutation ; Proto-Oncogene Proteins c-raf - genetics ; Proto-Oncogene Proteins c-raf - metabolism ; Proto-Oncogene Proteins p21(ras) - genetics ; Proto-Oncogene Proteins p21(ras) - metabolism ; Subcellular Fractions - enzymology ; Substrate Specificity ; Transfection</subject><ispartof>International journal of cancer, 2000-10, Vol.88 (1), p.44-52</ispartof><rights>Published 2000 Wiley‐Liss, Inc.</rights><rights>2000 INIST-CNRS</rights><rights>Copyright 2000 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4847-7df9635a1fdaf053096c73feffa65ae7b9402aac8d48dce9bcf36af72af2d60e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1097-0215%2820001001%2988%3A1%3C44%3A%3AAID-IJC7%3E3.0.CO%3B2-8$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1097-0215%2820001001%2988%3A1%3C44%3A%3AAID-IJC7%3E3.0.CO%3B2-8$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1498374$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10962438$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez‐Lacaci, Isabel</creatorcontrib><creatorcontrib>Kannan, Subha</creatorcontrib><creatorcontrib>De Santis, Marta</creatorcontrib><creatorcontrib>Bianco, Caterina</creatorcontrib><creatorcontrib>Kim, Nancy</creatorcontrib><creatorcontrib>Wallace‐Jones, Brenda</creatorcontrib><creatorcontrib>Ebert, Andreas D.</creatorcontrib><creatorcontrib>Wechselberger, Christian</creatorcontrib><creatorcontrib>Salomon, David S.</creatorcontrib><title>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.</description><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibody Specificity</subject><subject>Biological and medical sciences</subject><subject>Breast - enzymology</subject><subject>Breast - metabolism</subject><subject>Breast - pathology</subject><subject>Cell Line, Transformed</subject><subject>Cell physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cell Transformation, Neoplastic - genetics</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Cells, Cultured</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Epidermal Growth Factor - metabolism</subject><subject>Epidermal Growth Factor - pharmacokinetics</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>ErbB Receptors - physiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation</subject><subject>Genes, ras - genetics</subject><subject>Genes, ras - physiology</subject><subject>Growth Inhibitors - pharmacology</subject><subject>Ha-ras gene</subject><subject>Humans</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>mitogen-activated protein kinase</subject><subject>Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors</subject><subject>Mitogen-Activated Protein Kinase 1 - biosynthesis</subject><subject>Mitogen-Activated Protein Kinase 1 - metabolism</subject><subject>Mitogen-Activated Protein Kinase 3</subject><subject>Mitogen-Activated Protein Kinases - antagonists & inhibitors</subject><subject>Mitogen-Activated Protein Kinases - biosynthesis</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Phosphorylation</subject><subject>Point Mutation</subject><subject>Proto-Oncogene Proteins c-raf - genetics</subject><subject>Proto-Oncogene Proteins c-raf - metabolism</subject><subject>Proto-Oncogene Proteins p21(ras) - genetics</subject><subject>Proto-Oncogene Proteins p21(ras) - metabolism</subject><subject>Subcellular Fractions - enzymology</subject><subject>Substrate Specificity</subject><subject>Transfection</subject><issn>0020-7136</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkUuO1DAQhi0EYpqBKyAvEIJFGjt2YqdBSK3wajRSIx5rq9opTxvyaOKE0ew4AsfgXJwEhzQMCzasXHZ99ddv_YQozpacsfQRZ4VKWMqzByljLD7xh1qv-BMpV6v15lmyeV2qp2LJluX2cZroa2TxZ-I6WUQFligu8hNyK4SPcZpnTN4kJxHKUyn0gnx_u35Hhx7a4Lq-gcF3LbUwBgw0jGEA32JFwQ7-y9zrHMWDrzCyNT3vu4thT13sdz3t0eJhKqCtKNZ4NdH4oTvH9sfXb0elqHnouwF9Sz_5FgLSWO3HBlraQNNAfzltGfZY-7jGYl2H2-SGgzrgneN5Sj68eP6-fJWcbV9uyvVZYqWWKlGVK3KRAXcVOJaJ-FGrhEPnIM8A1a6QLAWwupK6sljsrBM5OJWCS6ucoTgl92fdaPDziGEwjQ-TA2ixG4PhKlNCKh3B7QzavguhR2cOvZ-sG87MFJ6ZojBTFOZ3eEZrw42UxsTwzBSeEYaZcmtSMynePa4edw1Wf-nNaUXg3hGAYKF2MTbrwxUnCy2UjNibGbvwNV7-j61_uPp1Fz8BbhLEnQ</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Martínez‐Lacaci, Isabel</creator><creator>Kannan, Subha</creator><creator>De Santis, Marta</creator><creator>Bianco, Caterina</creator><creator>Kim, Nancy</creator><creator>Wallace‐Jones, Brenda</creator><creator>Ebert, Andreas D.</creator><creator>Wechselberger, Christian</creator><creator>Salomon, David S.</creator><general>John Wiley & Sons, Inc</general><general>Wiley-Liss</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>H94</scope></search><sort><creationdate>20001001</creationdate><title>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</title><author>Martínez‐Lacaci, Isabel ; Kannan, Subha ; De Santis, Marta ; Bianco, Caterina ; Kim, Nancy ; Wallace‐Jones, Brenda ; Ebert, Andreas D. ; Wechselberger, Christian ; Salomon, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-7df9635a1fdaf053096c73feffa65ae7b9402aac8d48dce9bcf36af72af2d60e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibody Specificity</topic><topic>Biological and medical sciences</topic><topic>Breast - enzymology</topic><topic>Breast - metabolism</topic><topic>Breast - pathology</topic><topic>Cell Line, Transformed</topic><topic>Cell physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cell Transformation, Neoplastic - genetics</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Cells, Cultured</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Epidermal Growth Factor - metabolism</topic><topic>Epidermal Growth Factor - pharmacokinetics</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>ErbB Receptors - physiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation</topic><topic>Genes, ras - genetics</topic><topic>Genes, ras - physiology</topic><topic>Growth Inhibitors - pharmacology</topic><topic>Ha-ras gene</topic><topic>Humans</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>mitogen-activated protein kinase</topic><topic>Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors</topic><topic>Mitogen-Activated Protein Kinase 1 - biosynthesis</topic><topic>Mitogen-Activated Protein Kinase 1 - metabolism</topic><topic>Mitogen-Activated Protein Kinase 3</topic><topic>Mitogen-Activated Protein Kinases - antagonists & inhibitors</topic><topic>Mitogen-Activated Protein Kinases - biosynthesis</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Phosphorylation</topic><topic>Point Mutation</topic><topic>Proto-Oncogene Proteins c-raf - genetics</topic><topic>Proto-Oncogene Proteins c-raf - metabolism</topic><topic>Proto-Oncogene Proteins p21(ras) - genetics</topic><topic>Proto-Oncogene Proteins p21(ras) - metabolism</topic><topic>Subcellular Fractions - enzymology</topic><topic>Substrate Specificity</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez‐Lacaci, Isabel</creatorcontrib><creatorcontrib>Kannan, Subha</creatorcontrib><creatorcontrib>De Santis, Marta</creatorcontrib><creatorcontrib>Bianco, Caterina</creatorcontrib><creatorcontrib>Kim, Nancy</creatorcontrib><creatorcontrib>Wallace‐Jones, Brenda</creatorcontrib><creatorcontrib>Ebert, Andreas D.</creatorcontrib><creatorcontrib>Wechselberger, Christian</creatorcontrib><creatorcontrib>Salomon, David S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez‐Lacaci, Isabel</au><au>Kannan, Subha</au><au>De Santis, Marta</au><au>Bianco, Caterina</au><au>Kim, Nancy</au><au>Wallace‐Jones, Brenda</au><au>Ebert, Andreas D.</au><au>Wechselberger, Christian</au><au>Salomon, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>88</volume><issue>1</issue><spage>44</spage><epage>52</epage><pages>44-52</pages><issn>0020-7136</issn><eissn>1097-0215</eissn><coden>IJCNAW</coden><abstract>Activation of the ras oncogene is an important step in carcinogenesis. Human MCF‐10A mammary epithelial cells were transformed with a point‐mutated form of the Ha‐ras oncogene. Epidermal growth factor receptor (EGFR) phosphorylation levels were chronically elevated after EGF induction and the EGFR ligand–driven internalization rate was slower in Ha‐ras transformed MCF‐10A cells. Additionally, basal levels of p42/44 mitogen‐activated protein kinase (MAPK) expression and enzyme activity were significantly higher in Ha‐ras transformed cells, localized predominantly in the nucleus. The anti‐EGFR monoclonal antibody (MAb) 225 and the EGFR tyrosine kinase inhibitor PD153035 blocked anchorage‐independent growth of Ha‐ras transformed cells in soft agar and were more effective when used in combination. The MEK inhibitor PD98059 and anti‐erbB‐2 MAb L26 also suppressed colony formation of Ha‐ras transformed cells in soft agar. Therefore, Ha‐ras transformation leads to an augmentation in signaling through the EGFR as a result of an increase in ligand‐dependent phosphorylation, a decrease in its internalization and an up‐regulation in basal p44/42 MAPK levels. These effects may contribute to uncontrolled growth of Ha‐ras–transformed human mammary epithelial cells. Int. J. Cancer 88:44–52, 2000. © 2000 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10962438</pmid><doi>10.1002/1097-0215(20001001)88:1<44::AID-IJC7>3.0.CO;2-8</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2000-10, Vol.88 (1), p.44-52 |
issn | 0020-7136 1097-0215 |
language | eng |
recordid | cdi_proquest_miscellaneous_17573478 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Antibodies, Monoclonal - immunology Antibodies, Monoclonal - pharmacology Antibody Specificity Biological and medical sciences Breast - enzymology Breast - metabolism Breast - pathology Cell Line, Transformed Cell physiology Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Cells, Cultured Enzyme Activation Enzyme Inhibitors - pharmacology Epidermal Growth Factor - metabolism Epidermal Growth Factor - pharmacokinetics ErbB Receptors - genetics ErbB Receptors - metabolism ErbB Receptors - physiology Female Fundamental and applied biological sciences. Psychology Gene Expression Regulation Genes, ras - genetics Genes, ras - physiology Growth Inhibitors - pharmacology Ha-ras gene Humans MAP Kinase Signaling System - physiology mitogen-activated protein kinase Mitogen-Activated Protein Kinase 1 - antagonists & inhibitors Mitogen-Activated Protein Kinase 1 - biosynthesis Mitogen-Activated Protein Kinase 1 - metabolism Mitogen-Activated Protein Kinase 3 Mitogen-Activated Protein Kinases - antagonists & inhibitors Mitogen-Activated Protein Kinases - biosynthesis Mitogen-Activated Protein Kinases - metabolism Molecular and cellular biology Phosphorylation Point Mutation Proto-Oncogene Proteins c-raf - genetics Proto-Oncogene Proteins c-raf - metabolism Proto-Oncogene Proteins p21(ras) - genetics Proto-Oncogene Proteins p21(ras) - metabolism Subcellular Fractions - enzymology Substrate Specificity Transfection |
title | RAS transformation causes sustained activation of epidermal growth factor receptor and elevation of mitogen‐activated protein kinase in human mammary epithelial cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RAS%20transformation%20causes%20sustained%20activation%20of%20epidermal%20growth%20factor%20receptor%20and%20elevation%20of%20mitogen%E2%80%90activated%20protein%20kinase%20in%20human%20mammary%20epithelial%20cells&rft.jtitle=International%20journal%20of%20cancer&rft.au=Mart%C3%ADnez%E2%80%90Lacaci,%20Isabel&rft.date=2000-10-01&rft.volume=88&rft.issue=1&rft.spage=44&rft.epage=52&rft.pages=44-52&rft.issn=0020-7136&rft.eissn=1097-0215&rft.coden=IJCNAW&rft_id=info:doi/10.1002/1097-0215(20001001)88:1%3C44::AID-IJC7%3E3.0.CO;2-8&rft_dat=%3Cproquest_cross%3E17573478%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17573478&rft_id=info:pmid/10962438&rfr_iscdi=true |