Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, southwestern Michigan

In the glacial topography of southwestern Michigan, the water table does not always conform exactly to the land surface and flow-through wetlands, those with both ground water recharge and discharge, are common. The W-1 wetland in Cass County, Michigan, a flow-through system, shows a distinct contra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ground water 1998-09, Vol.36 (5), p.849-856
Hauptverfasser: Kehew, A.E. (Western Michigan University, Kalamazoo, MI.), Passero, R.N, Krishnamurthy, R.V, Lovett, C.K, Betts, M.A, Dayharsh, B.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 856
container_issue 5
container_start_page 849
container_title Ground water
container_volume 36
creator Kehew, A.E. (Western Michigan University, Kalamazoo, MI.)
Passero, R.N
Krishnamurthy, R.V
Lovett, C.K
Betts, M.A
Dayharsh, B.A
description In the glacial topography of southwestern Michigan, the water table does not always conform exactly to the land surface and flow-through wetlands, those with both ground water recharge and discharge, are common. The W-1 wetland in Cass County, Michigan, a flow-through system, shows a distinct contrast between upgradient and downgradient ground water quality. Ground water discharging into the wetland is oxic, has up to 40 mg/L NO3-N derived from fertilizer and hog manure application to corn fields, and has major ion concentrations typical of the shallow unconfined aquifer in the area. In contrast, shallow ground water that originates as recharge from the wetland forms a plume extending downgradient that can be identified by isotopic enrichment in 18O and deuterium resulting from evaporation in the wetland prior to recharge and by distinct chemical characteristics similar to the wetland surface water (low conductivity and alkalinity, low concentrations of sulfate, nitrate and dissolved oxygen and high concentrations of ammonia, and DOC). As the wetland surface water infiltrates into the unconfined aquifer, conductivity and alkalinity increase due to carbonate mineral dissolution and iron concentrations increase as ferric iron in the aquifer solids serves as an electron acceptor in microbially mediated reactions. The other chemical characteristics, including the lack of nitrate, persist in the flow system for significant distances downgradient from the wetland. The chemical and isotopic composition of shallow ground water around wetlands can be used to spatially delineate areas of groundwater discharge to the wetland and ground water recharge from the wetland, thereby providing a supplemental method to the use of sometimes inconclusive hydraulic head data in the determination of wetland recharge discharge function. In this study, the chemical and isotopic data confirm that the water table does not replicate surface topography around closed depressions in the landscape
doi_str_mv 10.1111/j.1745-6584.1998.tb02204.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17571645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17571645</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4589-4da8060e5575073d3040c526f0e9051b5f51ee555f83b41c3e2e99b3a92d016c3</originalsourceid><addsrcrecordid>eNqVkUFv1DAQhSMEEkvLT0CyeuBEwji2k5gLqirYUm2LUFuVm-V1JrtesnZrJ9rdf49XqXrghiXLh3nvm_GbLDujUNB0Pm8KWnORV6LhBZWyKYYllCXwYv8qm72UXmczAFrnvKp_v83exbgBACZBzrLt5aENfoXerHFrje6JdQMGbQbrHVnisEN0RJMdDr12LZkuGZ3xrrMOW7LqtbHJ1wbbDUQ_jbbD8IlEPw7rHcYEc-TamrVdaXeavel0H_H983uS3X__dndxmS9-zn9cnC9yzUUjc97qBipAIWoBNWsZcDCirDpACYIuRScopqroGrbk1DAsUcol07JsgVaGnWQfJ-5j8E9jGkJtbTTYpy-gH6OitahpxUUSnv0j3PgxuDSbKlnV8NS-SaIvk8gEH2PATj0Gu9XhoCio4xrURh2zVses1XEN6nkNap_MXyfzzvZ4-A-nmj-c3zVcJkI-EWwKc_9C0OGPqmpWC_VwM1e3N6W8-nW9UDTpP0z6TnulV8FGdX-b2BIggUv2F-q7qLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>236845078</pqid></control><display><type>article</type><title>Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, southwestern Michigan</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.) ; Passero, R.N ; Krishnamurthy, R.V ; Lovett, C.K ; Betts, M.A ; Dayharsh, B.A</creator><creatorcontrib>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.) ; Passero, R.N ; Krishnamurthy, R.V ; Lovett, C.K ; Betts, M.A ; Dayharsh, B.A</creatorcontrib><description>In the glacial topography of southwestern Michigan, the water table does not always conform exactly to the land surface and flow-through wetlands, those with both ground water recharge and discharge, are common. The W-1 wetland in Cass County, Michigan, a flow-through system, shows a distinct contrast between upgradient and downgradient ground water quality. Ground water discharging into the wetland is oxic, has up to 40 mg/L NO3-N derived from fertilizer and hog manure application to corn fields, and has major ion concentrations typical of the shallow unconfined aquifer in the area. In contrast, shallow ground water that originates as recharge from the wetland forms a plume extending downgradient that can be identified by isotopic enrichment in 18O and deuterium resulting from evaporation in the wetland prior to recharge and by distinct chemical characteristics similar to the wetland surface water (low conductivity and alkalinity, low concentrations of sulfate, nitrate and dissolved oxygen and high concentrations of ammonia, and DOC). As the wetland surface water infiltrates into the unconfined aquifer, conductivity and alkalinity increase due to carbonate mineral dissolution and iron concentrations increase as ferric iron in the aquifer solids serves as an electron acceptor in microbially mediated reactions. The other chemical characteristics, including the lack of nitrate, persist in the flow system for significant distances downgradient from the wetland. The chemical and isotopic composition of shallow ground water around wetlands can be used to spatially delineate areas of groundwater discharge to the wetland and ground water recharge from the wetland, thereby providing a supplemental method to the use of sometimes inconclusive hydraulic head data in the determination of wetland recharge discharge function. In this study, the chemical and isotopic data confirm that the water table does not replicate surface topography around closed depressions in the landscape</description><identifier>ISSN: 0017-467X</identifier><identifier>EISSN: 1745-6584</identifier><identifier>DOI: 10.1111/j.1745-6584.1998.tb02204.x</identifier><identifier>CODEN: GRWAAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>ABONOS NITROGENADOS ; AGUA SUPERFICIAL ; AMMONIUM COMPOUNDS ; AMMONIUM NITROGEN ; ANION ; ANIONES ; ANIONS ; APPLICATION METHODS ; AZOTE ; CALIDAD DEL AGUA ; CAPA FREATICA ; CATION ; CATIONES ; CATIONS ; CERDO ; COMPOSE DE L'AMMONIUM ; COMPOSE ORGANIQUE ; COMPUESTOS DE AMONIO ; COMPUESTOS ORGANICOS ; DISCHARGE ; DISSOLVED ORGANIC CARBON ; EAU SUPERFICIELLE ; ENGRAIS AZOTE ; ESTIERCOL ; FARMYARD MANURE ; FER ; FUMIER ; GROUNDWATER POLLUTION ; GROUNDWATER RECHARGE ; GROUNDWATER TABLE ; HIERRO ; IRON ; METHODE D'APPLICATION ; METODOS DE APLICACION ; MICHIGAN ; NAPPE SOUTERRAINE ; NITRATE ; NITRATES ; NITRATOS ; NITROGEN ; NITROGEN FERTILIZERS ; NITROGENO ; ORGANIC COMPOUNDS ; OXIGENO ; OXYGEN ; OXYGENE ; POLLUTION DE L'EAU SOUTERRAINE ; POLUCION DE AGUAS SUBTERRANEAS ; PORCIN ; QUALITE DE L'EAU ; RECARGA DE AGUAS SUBTERRANEAS ; RECHARGE DE LA NAPPE ; SURFACE WATER ; SWINE ; TERRE HUMIDE ; TIERRAS HUMEDAS ; USA, Michigan, Cass Cty ; WATER QUALITY ; WETLANDS</subject><ispartof>Ground water, 1998-09, Vol.36 (5), p.849-856</ispartof><rights>Copyright Ground Water Publishing Company Sep/Oct 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4589-4da8060e5575073d3040c526f0e9051b5f51ee555f83b41c3e2e99b3a92d016c3</citedby><cites>FETCH-LOGICAL-a4589-4da8060e5575073d3040c526f0e9051b5f51ee555f83b41c3e2e99b3a92d016c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1745-6584.1998.tb02204.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1745-6584.1998.tb02204.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.)</creatorcontrib><creatorcontrib>Passero, R.N</creatorcontrib><creatorcontrib>Krishnamurthy, R.V</creatorcontrib><creatorcontrib>Lovett, C.K</creatorcontrib><creatorcontrib>Betts, M.A</creatorcontrib><creatorcontrib>Dayharsh, B.A</creatorcontrib><title>Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, southwestern Michigan</title><title>Ground water</title><description>In the glacial topography of southwestern Michigan, the water table does not always conform exactly to the land surface and flow-through wetlands, those with both ground water recharge and discharge, are common. The W-1 wetland in Cass County, Michigan, a flow-through system, shows a distinct contrast between upgradient and downgradient ground water quality. Ground water discharging into the wetland is oxic, has up to 40 mg/L NO3-N derived from fertilizer and hog manure application to corn fields, and has major ion concentrations typical of the shallow unconfined aquifer in the area. In contrast, shallow ground water that originates as recharge from the wetland forms a plume extending downgradient that can be identified by isotopic enrichment in 18O and deuterium resulting from evaporation in the wetland prior to recharge and by distinct chemical characteristics similar to the wetland surface water (low conductivity and alkalinity, low concentrations of sulfate, nitrate and dissolved oxygen and high concentrations of ammonia, and DOC). As the wetland surface water infiltrates into the unconfined aquifer, conductivity and alkalinity increase due to carbonate mineral dissolution and iron concentrations increase as ferric iron in the aquifer solids serves as an electron acceptor in microbially mediated reactions. The other chemical characteristics, including the lack of nitrate, persist in the flow system for significant distances downgradient from the wetland. The chemical and isotopic composition of shallow ground water around wetlands can be used to spatially delineate areas of groundwater discharge to the wetland and ground water recharge from the wetland, thereby providing a supplemental method to the use of sometimes inconclusive hydraulic head data in the determination of wetland recharge discharge function. In this study, the chemical and isotopic data confirm that the water table does not replicate surface topography around closed depressions in the landscape</description><subject>ABONOS NITROGENADOS</subject><subject>AGUA SUPERFICIAL</subject><subject>AMMONIUM COMPOUNDS</subject><subject>AMMONIUM NITROGEN</subject><subject>ANION</subject><subject>ANIONES</subject><subject>ANIONS</subject><subject>APPLICATION METHODS</subject><subject>AZOTE</subject><subject>CALIDAD DEL AGUA</subject><subject>CAPA FREATICA</subject><subject>CATION</subject><subject>CATIONES</subject><subject>CATIONS</subject><subject>CERDO</subject><subject>COMPOSE DE L'AMMONIUM</subject><subject>COMPOSE ORGANIQUE</subject><subject>COMPUESTOS DE AMONIO</subject><subject>COMPUESTOS ORGANICOS</subject><subject>DISCHARGE</subject><subject>DISSOLVED ORGANIC CARBON</subject><subject>EAU SUPERFICIELLE</subject><subject>ENGRAIS AZOTE</subject><subject>ESTIERCOL</subject><subject>FARMYARD MANURE</subject><subject>FER</subject><subject>FUMIER</subject><subject>GROUNDWATER POLLUTION</subject><subject>GROUNDWATER RECHARGE</subject><subject>GROUNDWATER TABLE</subject><subject>HIERRO</subject><subject>IRON</subject><subject>METHODE D'APPLICATION</subject><subject>METODOS DE APLICACION</subject><subject>MICHIGAN</subject><subject>NAPPE SOUTERRAINE</subject><subject>NITRATE</subject><subject>NITRATES</subject><subject>NITRATOS</subject><subject>NITROGEN</subject><subject>NITROGEN FERTILIZERS</subject><subject>NITROGENO</subject><subject>ORGANIC COMPOUNDS</subject><subject>OXIGENO</subject><subject>OXYGEN</subject><subject>OXYGENE</subject><subject>POLLUTION DE L'EAU SOUTERRAINE</subject><subject>POLUCION DE AGUAS SUBTERRANEAS</subject><subject>PORCIN</subject><subject>QUALITE DE L'EAU</subject><subject>RECARGA DE AGUAS SUBTERRANEAS</subject><subject>RECHARGE DE LA NAPPE</subject><subject>SURFACE WATER</subject><subject>SWINE</subject><subject>TERRE HUMIDE</subject><subject>TIERRAS HUMEDAS</subject><subject>USA, Michigan, Cass Cty</subject><subject>WATER QUALITY</subject><subject>WETLANDS</subject><issn>0017-467X</issn><issn>1745-6584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqVkUFv1DAQhSMEEkvLT0CyeuBEwji2k5gLqirYUm2LUFuVm-V1JrtesnZrJ9rdf49XqXrghiXLh3nvm_GbLDujUNB0Pm8KWnORV6LhBZWyKYYllCXwYv8qm72UXmczAFrnvKp_v83exbgBACZBzrLt5aENfoXerHFrje6JdQMGbQbrHVnisEN0RJMdDr12LZkuGZ3xrrMOW7LqtbHJ1wbbDUQ_jbbD8IlEPw7rHcYEc-TamrVdaXeavel0H_H983uS3X__dndxmS9-zn9cnC9yzUUjc97qBipAIWoBNWsZcDCirDpACYIuRScopqroGrbk1DAsUcol07JsgVaGnWQfJ-5j8E9jGkJtbTTYpy-gH6OitahpxUUSnv0j3PgxuDSbKlnV8NS-SaIvk8gEH2PATj0Gu9XhoCio4xrURh2zVses1XEN6nkNap_MXyfzzvZ4-A-nmj-c3zVcJkI-EWwKc_9C0OGPqmpWC_VwM1e3N6W8-nW9UDTpP0z6TnulV8FGdX-b2BIggUv2F-q7qLg</recordid><startdate>199809</startdate><enddate>199809</enddate><creator>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.)</creator><creator>Passero, R.N</creator><creator>Krishnamurthy, R.V</creator><creator>Lovett, C.K</creator><creator>Betts, M.A</creator><creator>Dayharsh, B.A</creator><general>Blackwell Publishing Ltd</general><general>Ground Water Publishing Company</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>199809</creationdate><title>Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, southwestern Michigan</title><author>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.) ; Passero, R.N ; Krishnamurthy, R.V ; Lovett, C.K ; Betts, M.A ; Dayharsh, B.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4589-4da8060e5575073d3040c526f0e9051b5f51ee555f83b41c3e2e99b3a92d016c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ABONOS NITROGENADOS</topic><topic>AGUA SUPERFICIAL</topic><topic>AMMONIUM COMPOUNDS</topic><topic>AMMONIUM NITROGEN</topic><topic>ANION</topic><topic>ANIONES</topic><topic>ANIONS</topic><topic>APPLICATION METHODS</topic><topic>AZOTE</topic><topic>CALIDAD DEL AGUA</topic><topic>CAPA FREATICA</topic><topic>CATION</topic><topic>CATIONES</topic><topic>CATIONS</topic><topic>CERDO</topic><topic>COMPOSE DE L'AMMONIUM</topic><topic>COMPOSE ORGANIQUE</topic><topic>COMPUESTOS DE AMONIO</topic><topic>COMPUESTOS ORGANICOS</topic><topic>DISCHARGE</topic><topic>DISSOLVED ORGANIC CARBON</topic><topic>EAU SUPERFICIELLE</topic><topic>ENGRAIS AZOTE</topic><topic>ESTIERCOL</topic><topic>FARMYARD MANURE</topic><topic>FER</topic><topic>FUMIER</topic><topic>GROUNDWATER POLLUTION</topic><topic>GROUNDWATER RECHARGE</topic><topic>GROUNDWATER TABLE</topic><topic>HIERRO</topic><topic>IRON</topic><topic>METHODE D'APPLICATION</topic><topic>METODOS DE APLICACION</topic><topic>MICHIGAN</topic><topic>NAPPE SOUTERRAINE</topic><topic>NITRATE</topic><topic>NITRATES</topic><topic>NITRATOS</topic><topic>NITROGEN</topic><topic>NITROGEN FERTILIZERS</topic><topic>NITROGENO</topic><topic>ORGANIC COMPOUNDS</topic><topic>OXIGENO</topic><topic>OXYGEN</topic><topic>OXYGENE</topic><topic>POLLUTION DE L'EAU SOUTERRAINE</topic><topic>POLUCION DE AGUAS SUBTERRANEAS</topic><topic>PORCIN</topic><topic>QUALITE DE L'EAU</topic><topic>RECARGA DE AGUAS SUBTERRANEAS</topic><topic>RECHARGE DE LA NAPPE</topic><topic>SURFACE WATER</topic><topic>SWINE</topic><topic>TERRE HUMIDE</topic><topic>TIERRAS HUMEDAS</topic><topic>USA, Michigan, Cass Cty</topic><topic>WATER QUALITY</topic><topic>WETLANDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.)</creatorcontrib><creatorcontrib>Passero, R.N</creatorcontrib><creatorcontrib>Krishnamurthy, R.V</creatorcontrib><creatorcontrib>Lovett, C.K</creatorcontrib><creatorcontrib>Betts, M.A</creatorcontrib><creatorcontrib>Dayharsh, B.A</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Ground water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kehew, A.E. (Western Michigan University, Kalamazoo, MI.)</au><au>Passero, R.N</au><au>Krishnamurthy, R.V</au><au>Lovett, C.K</au><au>Betts, M.A</au><au>Dayharsh, B.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, southwestern Michigan</atitle><jtitle>Ground water</jtitle><date>1998-09</date><risdate>1998</risdate><volume>36</volume><issue>5</issue><spage>849</spage><epage>856</epage><pages>849-856</pages><issn>0017-467X</issn><eissn>1745-6584</eissn><coden>GRWAAP</coden><abstract>In the glacial topography of southwestern Michigan, the water table does not always conform exactly to the land surface and flow-through wetlands, those with both ground water recharge and discharge, are common. The W-1 wetland in Cass County, Michigan, a flow-through system, shows a distinct contrast between upgradient and downgradient ground water quality. Ground water discharging into the wetland is oxic, has up to 40 mg/L NO3-N derived from fertilizer and hog manure application to corn fields, and has major ion concentrations typical of the shallow unconfined aquifer in the area. In contrast, shallow ground water that originates as recharge from the wetland forms a plume extending downgradient that can be identified by isotopic enrichment in 18O and deuterium resulting from evaporation in the wetland prior to recharge and by distinct chemical characteristics similar to the wetland surface water (low conductivity and alkalinity, low concentrations of sulfate, nitrate and dissolved oxygen and high concentrations of ammonia, and DOC). As the wetland surface water infiltrates into the unconfined aquifer, conductivity and alkalinity increase due to carbonate mineral dissolution and iron concentrations increase as ferric iron in the aquifer solids serves as an electron acceptor in microbially mediated reactions. The other chemical characteristics, including the lack of nitrate, persist in the flow system for significant distances downgradient from the wetland. The chemical and isotopic composition of shallow ground water around wetlands can be used to spatially delineate areas of groundwater discharge to the wetland and ground water recharge from the wetland, thereby providing a supplemental method to the use of sometimes inconclusive hydraulic head data in the determination of wetland recharge discharge function. In this study, the chemical and isotopic data confirm that the water table does not replicate surface topography around closed depressions in the landscape</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1745-6584.1998.tb02204.x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-467X
ispartof Ground water, 1998-09, Vol.36 (5), p.849-856
issn 0017-467X
1745-6584
language eng
recordid cdi_proquest_miscellaneous_17571645
source Wiley Online Library Journals Frontfile Complete
subjects ABONOS NITROGENADOS
AGUA SUPERFICIAL
AMMONIUM COMPOUNDS
AMMONIUM NITROGEN
ANION
ANIONES
ANIONS
APPLICATION METHODS
AZOTE
CALIDAD DEL AGUA
CAPA FREATICA
CATION
CATIONES
CATIONS
CERDO
COMPOSE DE L'AMMONIUM
COMPOSE ORGANIQUE
COMPUESTOS DE AMONIO
COMPUESTOS ORGANICOS
DISCHARGE
DISSOLVED ORGANIC CARBON
EAU SUPERFICIELLE
ENGRAIS AZOTE
ESTIERCOL
FARMYARD MANURE
FER
FUMIER
GROUNDWATER POLLUTION
GROUNDWATER RECHARGE
GROUNDWATER TABLE
HIERRO
IRON
METHODE D'APPLICATION
METODOS DE APLICACION
MICHIGAN
NAPPE SOUTERRAINE
NITRATE
NITRATES
NITRATOS
NITROGEN
NITROGEN FERTILIZERS
NITROGENO
ORGANIC COMPOUNDS
OXIGENO
OXYGEN
OXYGENE
POLLUTION DE L'EAU SOUTERRAINE
POLUCION DE AGUAS SUBTERRANEAS
PORCIN
QUALITE DE L'EAU
RECARGA DE AGUAS SUBTERRANEAS
RECHARGE DE LA NAPPE
SURFACE WATER
SWINE
TERRE HUMIDE
TIERRAS HUMEDAS
USA, Michigan, Cass Cty
WATER QUALITY
WETLANDS
title Hydrogeochemical interaction between a wetland and an unconfined glacial drift aquifer, southwestern Michigan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogeochemical%20interaction%20between%20a%20wetland%20and%20an%20unconfined%20glacial%20drift%20aquifer,%20southwestern%20Michigan&rft.jtitle=Ground%20water&rft.au=Kehew,%20A.E.%20(Western%20Michigan%20University,%20Kalamazoo,%20MI.)&rft.date=1998-09&rft.volume=36&rft.issue=5&rft.spage=849&rft.epage=856&rft.pages=849-856&rft.issn=0017-467X&rft.eissn=1745-6584&rft.coden=GRWAAP&rft_id=info:doi/10.1111/j.1745-6584.1998.tb02204.x&rft_dat=%3Cproquest_cross%3E17571645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=236845078&rft_id=info:pmid/&rfr_iscdi=true