The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse
Repetitive nerve firings cause short-term depression (STD) of release at many synapses. Its underlying mechanism is largely attributed to depletion of a readily releasable vesicle pool (RRP) and a decreased probability of releasing a readily releasable vesicle during an action potential. Which of th...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2005-05, Vol.46 (4), p.633-645 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 4 |
container_start_page | 633 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 46 |
creator | Xu, Jianhua Wu, Ling-Gang |
description | Repetitive nerve firings cause short-term depression (STD) of release at many synapses. Its underlying mechanism is largely attributed to depletion of a readily releasable vesicle pool (RRP) and a decreased probability of releasing a readily releasable vesicle during an action potential. Which of these two mechanisms is dominant and the mechanism that decreases the release probability remain debated. Here, we report that a decreased release probability is caused by a calcium-induced inhibition of presynaptic calcium channels, particularly P/Q-type channels at the calyx of Held in rat brainstem. This mechanism was the dominant cause of STD in a wide range of stimulation conditions, such as during 2 to 20 action potential-equivalent stimuli (AP-e) at 0.2–30 Hz and after 2 to 20 AP-e at 0.2–100 Hz. Only during ≥100 Hz AP-e was depletion the dominant mechanism. |
doi_str_mv | 10.1016/j.neuron.2005.03.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17567404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627305003065</els_id><sourcerecordid>3234646791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-53ddebeb71c43447305405475d46e6d6bb3a8f3afa719b5c384663218f14589e3</originalsourceid><addsrcrecordid>eNp9kV1r2zAUhsXYaNOu_2AMwWB39nSiD9s3g5GuW6GlhWbXQpaPqUwsuZI9ln9fhQQGuxgIhNDzvvp4CPkArAQG6stQelxi8OWaMVkyXrK1eENWwJqqENA0b8mK1Y0q1Lri5-QipYExELKBM3IOshECOKzIy_YZ6TXaiCYhdZ7Oef0YMe29mWZn6cbsrFtGulliRD_T20QNvTdDiHlryZnQ06fnEOdii3HMVVMOJxc8NXMmc3z_p9juJ6RPh8qE78m73uwSXp3mS_Lr5vt287O4e_hxu_l2V1jJYS4k7zpssa3ACi5ExZkUeVSyEwpVp9qWm7rnpjcVNK20vBZK8TXUfX5k3SC_JJ-PvVMMLwumWY8uWdztjMewJA2VVJVgIoOf_gGHsESf76ZBMq4kl_JAiSNlY0gpYq-n6EYT9xqYPgjRgz4K0QchmnGdheTYx1P50o7Y_Q2dDGTg6xHA_Be_HUadrENvsXMR7ay74P5_wivgopy0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503653554</pqid></control><display><type>article</type><title>The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xu, Jianhua ; Wu, Ling-Gang</creator><creatorcontrib>Xu, Jianhua ; Wu, Ling-Gang</creatorcontrib><description>Repetitive nerve firings cause short-term depression (STD) of release at many synapses. Its underlying mechanism is largely attributed to depletion of a readily releasable vesicle pool (RRP) and a decreased probability of releasing a readily releasable vesicle during an action potential. Which of these two mechanisms is dominant and the mechanism that decreases the release probability remain debated. Here, we report that a decreased release probability is caused by a calcium-induced inhibition of presynaptic calcium channels, particularly P/Q-type channels at the calyx of Held in rat brainstem. This mechanism was the dominant cause of STD in a wide range of stimulation conditions, such as during 2 to 20 action potential-equivalent stimuli (AP-e) at 0.2–30 Hz and after 2 to 20 AP-e at 0.2–100 Hz. Only during ≥100 Hz AP-e was depletion the dominant mechanism.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2005.03.024</identifier><identifier>PMID: 15944131</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Action Potentials - radiation effects ; Animals ; Animals, Newborn ; Barium - pharmacology ; Brain Stem - cytology ; Calcium - metabolism ; Calcium Channels - drug effects ; Calcium Channels - metabolism ; Calcium Channels - radiation effects ; Chelating Agents - pharmacology ; CREB-Binding Protein ; Dose-Response Relationship, Radiation ; Egtazic Acid - analogs & derivatives ; Egtazic Acid - pharmacology ; Electric Capacitance ; Electric Stimulation - methods ; Enzyme Inhibitors - pharmacology ; Hypotheses ; Imidazoles - pharmacology ; In Vitro Techniques ; Models, Biological ; Neural Inhibition - drug effects ; Neural Inhibition - physiology ; Neural Inhibition - radiation effects ; Nuclear Proteins - pharmacology ; Patch-Clamp Techniques - methods ; Peptides - pharmacology ; Presynaptic Terminals - drug effects ; Presynaptic Terminals - metabolism ; Rats ; Rats, Wistar ; Synapses - metabolism ; Time Factors ; Trans-Activators - pharmacology</subject><ispartof>Neuron (Cambridge, Mass.), 2005-05, Vol.46 (4), p.633-645</ispartof><rights>2005 Elsevier Inc.</rights><rights>Copyright Elsevier Limited May 19, 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-53ddebeb71c43447305405475d46e6d6bb3a8f3afa719b5c384663218f14589e3</citedby><cites>FETCH-LOGICAL-c531t-53ddebeb71c43447305405475d46e6d6bb3a8f3afa719b5c384663218f14589e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neuron.2005.03.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15944131$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Wu, Ling-Gang</creatorcontrib><title>The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Repetitive nerve firings cause short-term depression (STD) of release at many synapses. Its underlying mechanism is largely attributed to depletion of a readily releasable vesicle pool (RRP) and a decreased probability of releasing a readily releasable vesicle during an action potential. Which of these two mechanisms is dominant and the mechanism that decreases the release probability remain debated. Here, we report that a decreased release probability is caused by a calcium-induced inhibition of presynaptic calcium channels, particularly P/Q-type channels at the calyx of Held in rat brainstem. This mechanism was the dominant cause of STD in a wide range of stimulation conditions, such as during 2 to 20 action potential-equivalent stimuli (AP-e) at 0.2–30 Hz and after 2 to 20 AP-e at 0.2–100 Hz. Only during ≥100 Hz AP-e was depletion the dominant mechanism.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Action Potentials - radiation effects</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Barium - pharmacology</subject><subject>Brain Stem - cytology</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - drug effects</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Channels - radiation effects</subject><subject>Chelating Agents - pharmacology</subject><subject>CREB-Binding Protein</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Egtazic Acid - analogs & derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Electric Capacitance</subject><subject>Electric Stimulation - methods</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Hypotheses</subject><subject>Imidazoles - pharmacology</subject><subject>In Vitro Techniques</subject><subject>Models, Biological</subject><subject>Neural Inhibition - drug effects</subject><subject>Neural Inhibition - physiology</subject><subject>Neural Inhibition - radiation effects</subject><subject>Nuclear Proteins - pharmacology</subject><subject>Patch-Clamp Techniques - methods</subject><subject>Peptides - pharmacology</subject><subject>Presynaptic Terminals - drug effects</subject><subject>Presynaptic Terminals - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Synapses - metabolism</subject><subject>Time Factors</subject><subject>Trans-Activators - pharmacology</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV1r2zAUhsXYaNOu_2AMwWB39nSiD9s3g5GuW6GlhWbXQpaPqUwsuZI9ln9fhQQGuxgIhNDzvvp4CPkArAQG6stQelxi8OWaMVkyXrK1eENWwJqqENA0b8mK1Y0q1Lri5-QipYExELKBM3IOshECOKzIy_YZ6TXaiCYhdZ7Oef0YMe29mWZn6cbsrFtGulliRD_T20QNvTdDiHlryZnQ06fnEOdii3HMVVMOJxc8NXMmc3z_p9juJ6RPh8qE78m73uwSXp3mS_Lr5vt287O4e_hxu_l2V1jJYS4k7zpssa3ACi5ExZkUeVSyEwpVp9qWm7rnpjcVNK20vBZK8TXUfX5k3SC_JJ-PvVMMLwumWY8uWdztjMewJA2VVJVgIoOf_gGHsESf76ZBMq4kl_JAiSNlY0gpYq-n6EYT9xqYPgjRgz4K0QchmnGdheTYx1P50o7Y_Q2dDGTg6xHA_Be_HUadrENvsXMR7ay74P5_wivgopy0</recordid><startdate>20050519</startdate><enddate>20050519</enddate><creator>Xu, Jianhua</creator><creator>Wu, Ling-Gang</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20050519</creationdate><title>The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse</title><author>Xu, Jianhua ; Wu, Ling-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-53ddebeb71c43447305405475d46e6d6bb3a8f3afa719b5c384663218f14589e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Action Potentials - radiation effects</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Barium - pharmacology</topic><topic>Brain Stem - cytology</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - drug effects</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Channels - radiation effects</topic><topic>Chelating Agents - pharmacology</topic><topic>CREB-Binding Protein</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Egtazic Acid - analogs & derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Electric Capacitance</topic><topic>Electric Stimulation - methods</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Hypotheses</topic><topic>Imidazoles - pharmacology</topic><topic>In Vitro Techniques</topic><topic>Models, Biological</topic><topic>Neural Inhibition - drug effects</topic><topic>Neural Inhibition - physiology</topic><topic>Neural Inhibition - radiation effects</topic><topic>Nuclear Proteins - pharmacology</topic><topic>Patch-Clamp Techniques - methods</topic><topic>Peptides - pharmacology</topic><topic>Presynaptic Terminals - drug effects</topic><topic>Presynaptic Terminals - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Synapses - metabolism</topic><topic>Time Factors</topic><topic>Trans-Activators - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jianhua</creatorcontrib><creatorcontrib>Wu, Ling-Gang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jianhua</au><au>Wu, Ling-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2005-05-19</date><risdate>2005</risdate><volume>46</volume><issue>4</issue><spage>633</spage><epage>645</epage><pages>633-645</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Repetitive nerve firings cause short-term depression (STD) of release at many synapses. Its underlying mechanism is largely attributed to depletion of a readily releasable vesicle pool (RRP) and a decreased probability of releasing a readily releasable vesicle during an action potential. Which of these two mechanisms is dominant and the mechanism that decreases the release probability remain debated. Here, we report that a decreased release probability is caused by a calcium-induced inhibition of presynaptic calcium channels, particularly P/Q-type channels at the calyx of Held in rat brainstem. This mechanism was the dominant cause of STD in a wide range of stimulation conditions, such as during 2 to 20 action potential-equivalent stimuli (AP-e) at 0.2–30 Hz and after 2 to 20 AP-e at 0.2–100 Hz. Only during ≥100 Hz AP-e was depletion the dominant mechanism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15944131</pmid><doi>10.1016/j.neuron.2005.03.024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2005-05, Vol.46 (4), p.633-645 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_proquest_miscellaneous_17567404 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Action Potentials - drug effects Action Potentials - physiology Action Potentials - radiation effects Animals Animals, Newborn Barium - pharmacology Brain Stem - cytology Calcium - metabolism Calcium Channels - drug effects Calcium Channels - metabolism Calcium Channels - radiation effects Chelating Agents - pharmacology CREB-Binding Protein Dose-Response Relationship, Radiation Egtazic Acid - analogs & derivatives Egtazic Acid - pharmacology Electric Capacitance Electric Stimulation - methods Enzyme Inhibitors - pharmacology Hypotheses Imidazoles - pharmacology In Vitro Techniques Models, Biological Neural Inhibition - drug effects Neural Inhibition - physiology Neural Inhibition - radiation effects Nuclear Proteins - pharmacology Patch-Clamp Techniques - methods Peptides - pharmacology Presynaptic Terminals - drug effects Presynaptic Terminals - metabolism Rats Rats, Wistar Synapses - metabolism Time Factors Trans-Activators - pharmacology |
title | The Decrease in the Presynaptic Calcium Current Is a Major Cause of Short-Term Depression at a Calyx-Type Synapse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Decrease%20in%20the%20Presynaptic%20Calcium%20Current%20Is%20a%20Major%20Cause%20of%20Short-Term%20Depression%20at%20a%20Calyx-Type%20Synapse&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Xu,%20Jianhua&rft.date=2005-05-19&rft.volume=46&rft.issue=4&rft.spage=633&rft.epage=645&rft.pages=633-645&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2005.03.024&rft_dat=%3Cproquest_cross%3E3234646791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503653554&rft_id=info:pmid/15944131&rft_els_id=S0896627305003065&rfr_iscdi=true |