Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels

Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European journal of neuroscience 2004-09, Vol.20 (6), p.1545-1554
Hauptverfasser: Parikh, Vinay, Pomerleau, Francois, Huettl, Peter, Gerhardt, Greg A., Sarter, Martin, Bruno, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1554
container_issue 6
container_start_page 1545
container_title The European journal of neuroscience
container_volume 20
creator Parikh, Vinay
Pomerleau, Francois
Huettl, Peter
Gerhardt, Greg A.
Sarter, Martin
Bruno, John P.
description Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.
doi_str_mv 10.1111/j.1460-9568.2004.03614.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17551199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17551199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</originalsourceid><addsrcrecordid>eNqNkM1O3DAURi1EBVPaV0BedZfgm9iJvWCBEAUKmkqoFd1ZTnINHvIz2JnpzNvX6Qx0W29s6X7ns30IocBSiOtskQIvWKJEIdOMMZ6yvACebg7I7H1wSGZMiTyRUPw6Jh9DWDDGZMHFETkGkQuRZzAj2wezdA01IWAIHfYjHSx1PV279UDr56F1PfonV9PRmz50LgQ39LTaUtMt0Q8djj4OGxyxHqdJpOtn0z9hmFpwE7Ea23bVGv9WR1tcYxs-kQ_WtAE_7_cT8vPr1Y_Lm-T--_Xt5cV9UnPJedJYlfFC5mBKayqDooYmA2DWciihlKrkrKyMAmlsI1QllGxkVnGFEoQFlp-QL7vepR9eVxhGHX8xvcn0OKyChlIIAKViUO6CtR9C8Gj10rvO-K0GpifteqEnu3qyqyft-q92vYno6f6OVdVh8w_ce46B813gt2tx-9_F-urbfDpFPtnxLoy4eeeNf9FFmZdCP86v9fzmUck79aCL_A-2vaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17551199</pqid></control><display><type>article</type><title>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Parikh, Vinay ; Pomerleau, Francois ; Huettl, Peter ; Gerhardt, Greg A. ; Sarter, Martin ; Bruno, John P.</creator><creatorcontrib>Parikh, Vinay ; Pomerleau, Francois ; Huettl, Peter ; Gerhardt, Greg A. ; Sarter, Martin ; Bruno, John P.</creatorcontrib><description>Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (&gt; 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2004.03614.x</identifier><identifier>PMID: 15355321</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>acetylcholine ; Acetylcholine - metabolism ; Acetylcholine - pharmacology ; Animals ; Brain Chemistry ; Cerebral Cortex - anatomy &amp; histology ; Cerebral Cortex - chemistry ; Cerebral Cortex - metabolism ; Choline - metabolism ; Cholinesterase Inhibitors - pharmacology ; Dose-Response Relationship, Drug ; Drug Interactions ; Electrochemistry - methods ; Extracellular Space - metabolism ; frontoparietal cortex ; Male ; Microdialysis - methods ; microelectrode arrays ; Microelectrodes ; Muscarinic Antagonists - pharmacology ; Neostigmine - pharmacology ; Potassium Chloride - pharmacology ; rat ; Rats ; Rats, Inbred F344 ; Scopolamine Hydrobromide - pharmacology ; Stimulation, Chemical ; Time Factors</subject><ispartof>The European journal of neuroscience, 2004-09, Vol.20 (6), p.1545-1554</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</citedby><cites>FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2004.03614.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2004.03614.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15355321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parikh, Vinay</creatorcontrib><creatorcontrib>Pomerleau, Francois</creatorcontrib><creatorcontrib>Huettl, Peter</creatorcontrib><creatorcontrib>Gerhardt, Greg A.</creatorcontrib><creatorcontrib>Sarter, Martin</creatorcontrib><creatorcontrib>Bruno, John P.</creatorcontrib><title>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (&gt; 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.</description><subject>acetylcholine</subject><subject>Acetylcholine - metabolism</subject><subject>Acetylcholine - pharmacology</subject><subject>Animals</subject><subject>Brain Chemistry</subject><subject>Cerebral Cortex - anatomy &amp; histology</subject><subject>Cerebral Cortex - chemistry</subject><subject>Cerebral Cortex - metabolism</subject><subject>Choline - metabolism</subject><subject>Cholinesterase Inhibitors - pharmacology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Electrochemistry - methods</subject><subject>Extracellular Space - metabolism</subject><subject>frontoparietal cortex</subject><subject>Male</subject><subject>Microdialysis - methods</subject><subject>microelectrode arrays</subject><subject>Microelectrodes</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>Neostigmine - pharmacology</subject><subject>Potassium Chloride - pharmacology</subject><subject>rat</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Scopolamine Hydrobromide - pharmacology</subject><subject>Stimulation, Chemical</subject><subject>Time Factors</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1O3DAURi1EBVPaV0BedZfgm9iJvWCBEAUKmkqoFd1ZTnINHvIz2JnpzNvX6Qx0W29s6X7ns30IocBSiOtskQIvWKJEIdOMMZ6yvACebg7I7H1wSGZMiTyRUPw6Jh9DWDDGZMHFETkGkQuRZzAj2wezdA01IWAIHfYjHSx1PV279UDr56F1PfonV9PRmz50LgQ39LTaUtMt0Q8djj4OGxyxHqdJpOtn0z9hmFpwE7Ea23bVGv9WR1tcYxs-kQ_WtAE_7_cT8vPr1Y_Lm-T--_Xt5cV9UnPJedJYlfFC5mBKayqDooYmA2DWciihlKrkrKyMAmlsI1QllGxkVnGFEoQFlp-QL7vepR9eVxhGHX8xvcn0OKyChlIIAKViUO6CtR9C8Gj10rvO-K0GpifteqEnu3qyqyft-q92vYno6f6OVdVh8w_ce46B813gt2tx-9_F-urbfDpFPtnxLoy4eeeNf9FFmZdCP86v9fzmUck79aCL_A-2vaKQ</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Parikh, Vinay</creator><creator>Pomerleau, Francois</creator><creator>Huettl, Peter</creator><creator>Gerhardt, Greg A.</creator><creator>Sarter, Martin</creator><creator>Bruno, John P.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200409</creationdate><title>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</title><author>Parikh, Vinay ; Pomerleau, Francois ; Huettl, Peter ; Gerhardt, Greg A. ; Sarter, Martin ; Bruno, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>acetylcholine</topic><topic>Acetylcholine - metabolism</topic><topic>Acetylcholine - pharmacology</topic><topic>Animals</topic><topic>Brain Chemistry</topic><topic>Cerebral Cortex - anatomy &amp; histology</topic><topic>Cerebral Cortex - chemistry</topic><topic>Cerebral Cortex - metabolism</topic><topic>Choline - metabolism</topic><topic>Cholinesterase Inhibitors - pharmacology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Electrochemistry - methods</topic><topic>Extracellular Space - metabolism</topic><topic>frontoparietal cortex</topic><topic>Male</topic><topic>Microdialysis - methods</topic><topic>microelectrode arrays</topic><topic>Microelectrodes</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>Neostigmine - pharmacology</topic><topic>Potassium Chloride - pharmacology</topic><topic>rat</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Scopolamine Hydrobromide - pharmacology</topic><topic>Stimulation, Chemical</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parikh, Vinay</creatorcontrib><creatorcontrib>Pomerleau, Francois</creatorcontrib><creatorcontrib>Huettl, Peter</creatorcontrib><creatorcontrib>Gerhardt, Greg A.</creatorcontrib><creatorcontrib>Sarter, Martin</creatorcontrib><creatorcontrib>Bruno, John P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parikh, Vinay</au><au>Pomerleau, Francois</au><au>Huettl, Peter</au><au>Gerhardt, Greg A.</au><au>Sarter, Martin</au><au>Bruno, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2004-09</date><risdate>2004</risdate><volume>20</volume><issue>6</issue><spage>1545</spage><epage>1554</epage><pages>1545-1554</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (&gt; 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15355321</pmid><doi>10.1111/j.1460-9568.2004.03614.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-816X
ispartof The European journal of neuroscience, 2004-09, Vol.20 (6), p.1545-1554
issn 0953-816X
1460-9568
language eng
recordid cdi_proquest_miscellaneous_17551199
source MEDLINE; Wiley Online Library All Journals
subjects acetylcholine
Acetylcholine - metabolism
Acetylcholine - pharmacology
Animals
Brain Chemistry
Cerebral Cortex - anatomy & histology
Cerebral Cortex - chemistry
Cerebral Cortex - metabolism
Choline - metabolism
Cholinesterase Inhibitors - pharmacology
Dose-Response Relationship, Drug
Drug Interactions
Electrochemistry - methods
Extracellular Space - metabolism
frontoparietal cortex
Male
Microdialysis - methods
microelectrode arrays
Microelectrodes
Muscarinic Antagonists - pharmacology
Neostigmine - pharmacology
Potassium Chloride - pharmacology
rat
Rats
Rats, Inbred F344
Scopolamine Hydrobromide - pharmacology
Stimulation, Chemical
Time Factors
title Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20assessment%20of%20in%20vivo%20cholinergic%20transmission%20by%20amperometric%20detection%20of%20changes%20in%20extracellular%20choline%20levels&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Parikh,%20Vinay&rft.date=2004-09&rft.volume=20&rft.issue=6&rft.spage=1545&rft.epage=1554&rft.pages=1545-1554&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2004.03614.x&rft_dat=%3Cproquest_cross%3E17551199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17551199&rft_id=info:pmid/15355321&rfr_iscdi=true