Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels
Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brai...
Gespeichert in:
Veröffentlicht in: | The European journal of neuroscience 2004-09, Vol.20 (6), p.1545-1554 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1554 |
---|---|
container_issue | 6 |
container_start_page | 1545 |
container_title | The European journal of neuroscience |
container_volume | 20 |
creator | Parikh, Vinay Pomerleau, Francois Huettl, Peter Gerhardt, Greg A. Sarter, Martin Bruno, John P. |
description | Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission. |
doi_str_mv | 10.1111/j.1460-9568.2004.03614.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17551199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17551199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</originalsourceid><addsrcrecordid>eNqNkM1O3DAURi1EBVPaV0BedZfgm9iJvWCBEAUKmkqoFd1ZTnINHvIz2JnpzNvX6Qx0W29s6X7ns30IocBSiOtskQIvWKJEIdOMMZ6yvACebg7I7H1wSGZMiTyRUPw6Jh9DWDDGZMHFETkGkQuRZzAj2wezdA01IWAIHfYjHSx1PV279UDr56F1PfonV9PRmz50LgQ39LTaUtMt0Q8djj4OGxyxHqdJpOtn0z9hmFpwE7Ea23bVGv9WR1tcYxs-kQ_WtAE_7_cT8vPr1Y_Lm-T--_Xt5cV9UnPJedJYlfFC5mBKayqDooYmA2DWciihlKrkrKyMAmlsI1QllGxkVnGFEoQFlp-QL7vepR9eVxhGHX8xvcn0OKyChlIIAKViUO6CtR9C8Gj10rvO-K0GpifteqEnu3qyqyft-q92vYno6f6OVdVh8w_ce46B813gt2tx-9_F-urbfDpFPtnxLoy4eeeNf9FFmZdCP86v9fzmUck79aCL_A-2vaKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17551199</pqid></control><display><type>article</type><title>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Parikh, Vinay ; Pomerleau, Francois ; Huettl, Peter ; Gerhardt, Greg A. ; Sarter, Martin ; Bruno, John P.</creator><creatorcontrib>Parikh, Vinay ; Pomerleau, Francois ; Huettl, Peter ; Gerhardt, Greg A. ; Sarter, Martin ; Bruno, John P.</creatorcontrib><description>Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.</description><identifier>ISSN: 0953-816X</identifier><identifier>EISSN: 1460-9568</identifier><identifier>DOI: 10.1111/j.1460-9568.2004.03614.x</identifier><identifier>PMID: 15355321</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>acetylcholine ; Acetylcholine - metabolism ; Acetylcholine - pharmacology ; Animals ; Brain Chemistry ; Cerebral Cortex - anatomy & histology ; Cerebral Cortex - chemistry ; Cerebral Cortex - metabolism ; Choline - metabolism ; Cholinesterase Inhibitors - pharmacology ; Dose-Response Relationship, Drug ; Drug Interactions ; Electrochemistry - methods ; Extracellular Space - metabolism ; frontoparietal cortex ; Male ; Microdialysis - methods ; microelectrode arrays ; Microelectrodes ; Muscarinic Antagonists - pharmacology ; Neostigmine - pharmacology ; Potassium Chloride - pharmacology ; rat ; Rats ; Rats, Inbred F344 ; Scopolamine Hydrobromide - pharmacology ; Stimulation, Chemical ; Time Factors</subject><ispartof>The European journal of neuroscience, 2004-09, Vol.20 (6), p.1545-1554</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</citedby><cites>FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1460-9568.2004.03614.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1460-9568.2004.03614.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15355321$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parikh, Vinay</creatorcontrib><creatorcontrib>Pomerleau, Francois</creatorcontrib><creatorcontrib>Huettl, Peter</creatorcontrib><creatorcontrib>Gerhardt, Greg A.</creatorcontrib><creatorcontrib>Sarter, Martin</creatorcontrib><creatorcontrib>Bruno, John P.</creatorcontrib><title>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</title><title>The European journal of neuroscience</title><addtitle>Eur J Neurosci</addtitle><description>Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.</description><subject>acetylcholine</subject><subject>Acetylcholine - metabolism</subject><subject>Acetylcholine - pharmacology</subject><subject>Animals</subject><subject>Brain Chemistry</subject><subject>Cerebral Cortex - anatomy & histology</subject><subject>Cerebral Cortex - chemistry</subject><subject>Cerebral Cortex - metabolism</subject><subject>Choline - metabolism</subject><subject>Cholinesterase Inhibitors - pharmacology</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Electrochemistry - methods</subject><subject>Extracellular Space - metabolism</subject><subject>frontoparietal cortex</subject><subject>Male</subject><subject>Microdialysis - methods</subject><subject>microelectrode arrays</subject><subject>Microelectrodes</subject><subject>Muscarinic Antagonists - pharmacology</subject><subject>Neostigmine - pharmacology</subject><subject>Potassium Chloride - pharmacology</subject><subject>rat</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Scopolamine Hydrobromide - pharmacology</subject><subject>Stimulation, Chemical</subject><subject>Time Factors</subject><issn>0953-816X</issn><issn>1460-9568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1O3DAURi1EBVPaV0BedZfgm9iJvWCBEAUKmkqoFd1ZTnINHvIz2JnpzNvX6Qx0W29s6X7ns30IocBSiOtskQIvWKJEIdOMMZ6yvACebg7I7H1wSGZMiTyRUPw6Jh9DWDDGZMHFETkGkQuRZzAj2wezdA01IWAIHfYjHSx1PV279UDr56F1PfonV9PRmz50LgQ39LTaUtMt0Q8djj4OGxyxHqdJpOtn0z9hmFpwE7Ea23bVGv9WR1tcYxs-kQ_WtAE_7_cT8vPr1Y_Lm-T--_Xt5cV9UnPJedJYlfFC5mBKayqDooYmA2DWciihlKrkrKyMAmlsI1QllGxkVnGFEoQFlp-QL7vepR9eVxhGHX8xvcn0OKyChlIIAKViUO6CtR9C8Gj10rvO-K0GpifteqEnu3qyqyft-q92vYno6f6OVdVh8w_ce46B813gt2tx-9_F-urbfDpFPtnxLoy4eeeNf9FFmZdCP86v9fzmUck79aCL_A-2vaKQ</recordid><startdate>200409</startdate><enddate>200409</enddate><creator>Parikh, Vinay</creator><creator>Pomerleau, Francois</creator><creator>Huettl, Peter</creator><creator>Gerhardt, Greg A.</creator><creator>Sarter, Martin</creator><creator>Bruno, John P.</creator><general>Blackwell Science Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope></search><sort><creationdate>200409</creationdate><title>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</title><author>Parikh, Vinay ; Pomerleau, Francois ; Huettl, Peter ; Gerhardt, Greg A. ; Sarter, Martin ; Bruno, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4844-df9246831a7fabae5c1d2110ff41717897407ba918afd59b598d82b49e815f103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>acetylcholine</topic><topic>Acetylcholine - metabolism</topic><topic>Acetylcholine - pharmacology</topic><topic>Animals</topic><topic>Brain Chemistry</topic><topic>Cerebral Cortex - anatomy & histology</topic><topic>Cerebral Cortex - chemistry</topic><topic>Cerebral Cortex - metabolism</topic><topic>Choline - metabolism</topic><topic>Cholinesterase Inhibitors - pharmacology</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Electrochemistry - methods</topic><topic>Extracellular Space - metabolism</topic><topic>frontoparietal cortex</topic><topic>Male</topic><topic>Microdialysis - methods</topic><topic>microelectrode arrays</topic><topic>Microelectrodes</topic><topic>Muscarinic Antagonists - pharmacology</topic><topic>Neostigmine - pharmacology</topic><topic>Potassium Chloride - pharmacology</topic><topic>rat</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Scopolamine Hydrobromide - pharmacology</topic><topic>Stimulation, Chemical</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parikh, Vinay</creatorcontrib><creatorcontrib>Pomerleau, Francois</creatorcontrib><creatorcontrib>Huettl, Peter</creatorcontrib><creatorcontrib>Gerhardt, Greg A.</creatorcontrib><creatorcontrib>Sarter, Martin</creatorcontrib><creatorcontrib>Bruno, John P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><jtitle>The European journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parikh, Vinay</au><au>Pomerleau, Francois</au><au>Huettl, Peter</au><au>Gerhardt, Greg A.</au><au>Sarter, Martin</au><au>Bruno, John P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels</atitle><jtitle>The European journal of neuroscience</jtitle><addtitle>Eur J Neurosci</addtitle><date>2004-09</date><risdate>2004</risdate><volume>20</volume><issue>6</issue><spage>1545</spage><epage>1554</epage><pages>1545-1554</pages><issn>0953-816X</issn><eissn>1460-9568</eissn><abstract>Conventional microdialysis methods for measuring acetylcholine (ACh) efflux do not provide sufficient temporal resolution to relate cholinergic transmission to individual stimuli or behavioral responses, or sufficient spatial resolution to investigate heterogeneities in such regulation within a brain region. In an effort to overcome these constraints, we investigated a ceramic‐based microelectrode array designed to measure amperometrically rapid changes in extracellular choline as a marker for cholinergic transmission in the frontoparietal cortex of anesthetized rats. These microelectrodes exhibited detection limits of 300 nm for choline and selectivity (> 100 : 1) of choline over interferents such as ascorbic acid. Intracortical pressure ejections of choline (20 mm, 66–400 nL) and ACh (10 and 100 mm, 200 nL) dose‐dependently increased choline‐related signals that were cleared to background levels within 10 s. ACh, but not choline‐induced signals, were significantly attenuated by co‐ejection of the acetylcholinesterase inhibitor neostigmine (Neo; 100 mm). Pressure ejections of drugs known to increase cortical ACh efflux, potassium (KCl; 70 mm, 66, 200 nL) and scopolamine (Scop; 10 mm, 200 nL), also markedly increased extracellular choline signals, which again were inhibited by Neo. Scop‐induced choline signals were also found to be tetrodotoxin‐sensitive. Collectively, these findings suggest that drug‐induced increases in current measured with these microelectrode arrays reflect the oxidation of choline that is neuronally derived from the release and subsequent hydrolysis of ACh. Choline signals assessed using enzyme‐selective microelectrode arrays may represent a rapid, sensitive and spatially discrete measure of cholinergic transmission.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15355321</pmid><doi>10.1111/j.1460-9568.2004.03614.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-816X |
ispartof | The European journal of neuroscience, 2004-09, Vol.20 (6), p.1545-1554 |
issn | 0953-816X 1460-9568 |
language | eng |
recordid | cdi_proquest_miscellaneous_17551199 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | acetylcholine Acetylcholine - metabolism Acetylcholine - pharmacology Animals Brain Chemistry Cerebral Cortex - anatomy & histology Cerebral Cortex - chemistry Cerebral Cortex - metabolism Choline - metabolism Cholinesterase Inhibitors - pharmacology Dose-Response Relationship, Drug Drug Interactions Electrochemistry - methods Extracellular Space - metabolism frontoparietal cortex Male Microdialysis - methods microelectrode arrays Microelectrodes Muscarinic Antagonists - pharmacology Neostigmine - pharmacology Potassium Chloride - pharmacology rat Rats Rats, Inbred F344 Scopolamine Hydrobromide - pharmacology Stimulation, Chemical Time Factors |
title | Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20assessment%20of%20in%20vivo%20cholinergic%20transmission%20by%20amperometric%20detection%20of%20changes%20in%20extracellular%20choline%20levels&rft.jtitle=The%20European%20journal%20of%20neuroscience&rft.au=Parikh,%20Vinay&rft.date=2004-09&rft.volume=20&rft.issue=6&rft.spage=1545&rft.epage=1554&rft.pages=1545-1554&rft.issn=0953-816X&rft.eissn=1460-9568&rft_id=info:doi/10.1111/j.1460-9568.2004.03614.x&rft_dat=%3Cproquest_cross%3E17551199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17551199&rft_id=info:pmid/15355321&rfr_iscdi=true |