Porous covalent–organic materials: synthesis, clean energy application and design
Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential appl...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2013-01, Vol.1 (8), p.2691-2718 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2718 |
---|---|
container_issue | 8 |
container_start_page | 2691 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 1 |
creator | Xiang, Zhonghua Cao, Dapeng |
description | Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach. |
doi_str_mv | 10.1039/C2TA00063F |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753555845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753555845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</originalsourceid><addsrcrecordid>eNpF0MFKAzEQBuAgCpbai0-Qo4irsztJN_FWilWhoGA9L2l2tka22TXZCr31HXxDn8QtFT3NHL5_YH7GzlO4TgH1zTRbTABgjLMjNshAQpILPT7-25U6ZaMY33sDqndaD9jLcxOaTeS2-TQ1-e5799WElfHO8rXpKDhTx1set757o-jiFbc1Gc_JU1htuWnb2lnTucZz40te9mblz9hJ1cdo9DuH7HV2t5g-JPOn-8fpZJ5YROgSmatlDkbT2AqBCgRSlWJKmUCNMtO5lGYJJi-zDK0ql1WJPatspUEI0BKH7OJwtw3Nx4ZiV6xdtFTXxlP_U5HmEqWUSuzp5YHa0MQYqCra4NYmbIsUin15xX95-AMFcmHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753555845</pqid></control><display><type>article</type><title>Porous covalent–organic materials: synthesis, clean energy application and design</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xiang, Zhonghua ; Cao, Dapeng</creator><creatorcontrib>Xiang, Zhonghua ; Cao, Dapeng</creatorcontrib><description>Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C2TA00063F</identifier><language>eng</language><subject>Adsorptivity ; Clean energy ; COM ; Joining ; Nanostructure ; Photovoltaic cells ; Porous materials ; Solar cells ; Synthesis</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2013-01, Vol.1 (8), p.2691-2718</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</citedby><cites>FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><title>Porous covalent–organic materials: synthesis, clean energy application and design</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.</description><subject>Adsorptivity</subject><subject>Clean energy</subject><subject>COM</subject><subject>Joining</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Porous materials</subject><subject>Solar cells</subject><subject>Synthesis</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpF0MFKAzEQBuAgCpbai0-Qo4irsztJN_FWilWhoGA9L2l2tka22TXZCr31HXxDn8QtFT3NHL5_YH7GzlO4TgH1zTRbTABgjLMjNshAQpILPT7-25U6ZaMY33sDqndaD9jLcxOaTeS2-TQ1-e5799WElfHO8rXpKDhTx1set757o-jiFbc1Gc_JU1htuWnb2lnTucZz40te9mblz9hJ1cdo9DuH7HV2t5g-JPOn-8fpZJ5YROgSmatlDkbT2AqBCgRSlWJKmUCNMtO5lGYJJi-zDK0ql1WJPatspUEI0BKH7OJwtw3Nx4ZiV6xdtFTXxlP_U5HmEqWUSuzp5YHa0MQYqCra4NYmbIsUin15xX95-AMFcmHY</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xiang, Zhonghua</creator><creator>Cao, Dapeng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Porous covalent–organic materials: synthesis, clean energy application and design</title><author>Xiang, Zhonghua ; Cao, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorptivity</topic><topic>Clean energy</topic><topic>COM</topic><topic>Joining</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Porous materials</topic><topic>Solar cells</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zhonghua</au><au>Cao, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous covalent–organic materials: synthesis, clean energy application and design</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>1</volume><issue>8</issue><spage>2691</spage><epage>2718</epage><pages>2691-2718</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.</abstract><doi>10.1039/C2TA00063F</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2013-01, Vol.1 (8), p.2691-2718 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753555845 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorptivity Clean energy COM Joining Nanostructure Photovoltaic cells Porous materials Solar cells Synthesis |
title | Porous covalent–organic materials: synthesis, clean energy application and design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20covalent%E2%80%93organic%20materials:%20synthesis,%20clean%20energy%20application%20and%20design&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xiang,%20Zhonghua&rft.date=2013-01-01&rft.volume=1&rft.issue=8&rft.spage=2691&rft.epage=2718&rft.pages=2691-2718&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C2TA00063F&rft_dat=%3Cproquest_cross%3E1753555845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753555845&rft_id=info:pmid/&rfr_iscdi=true |