Porous covalent–organic materials: synthesis, clean energy application and design

Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2013-01, Vol.1 (8), p.2691-2718
Hauptverfasser: Xiang, Zhonghua, Cao, Dapeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2718
container_issue 8
container_start_page 2691
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 1
creator Xiang, Zhonghua
Cao, Dapeng
description Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.
doi_str_mv 10.1039/C2TA00063F
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753555845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753555845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</originalsourceid><addsrcrecordid>eNpF0MFKAzEQBuAgCpbai0-Qo4irsztJN_FWilWhoGA9L2l2tka22TXZCr31HXxDn8QtFT3NHL5_YH7GzlO4TgH1zTRbTABgjLMjNshAQpILPT7-25U6ZaMY33sDqndaD9jLcxOaTeS2-TQ1-e5799WElfHO8rXpKDhTx1set757o-jiFbc1Gc_JU1htuWnb2lnTucZz40te9mblz9hJ1cdo9DuH7HV2t5g-JPOn-8fpZJ5YROgSmatlDkbT2AqBCgRSlWJKmUCNMtO5lGYJJi-zDK0ql1WJPatspUEI0BKH7OJwtw3Nx4ZiV6xdtFTXxlP_U5HmEqWUSuzp5YHa0MQYqCra4NYmbIsUin15xX95-AMFcmHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753555845</pqid></control><display><type>article</type><title>Porous covalent–organic materials: synthesis, clean energy application and design</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Xiang, Zhonghua ; Cao, Dapeng</creator><creatorcontrib>Xiang, Zhonghua ; Cao, Dapeng</creatorcontrib><description>Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C2TA00063F</identifier><language>eng</language><subject>Adsorptivity ; Clean energy ; COM ; Joining ; Nanostructure ; Photovoltaic cells ; Porous materials ; Solar cells ; Synthesis</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2013-01, Vol.1 (8), p.2691-2718</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</citedby><cites>FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><title>Porous covalent–organic materials: synthesis, clean energy application and design</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.</description><subject>Adsorptivity</subject><subject>Clean energy</subject><subject>COM</subject><subject>Joining</subject><subject>Nanostructure</subject><subject>Photovoltaic cells</subject><subject>Porous materials</subject><subject>Solar cells</subject><subject>Synthesis</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpF0MFKAzEQBuAgCpbai0-Qo4irsztJN_FWilWhoGA9L2l2tka22TXZCr31HXxDn8QtFT3NHL5_YH7GzlO4TgH1zTRbTABgjLMjNshAQpILPT7-25U6ZaMY33sDqndaD9jLcxOaTeS2-TQ1-e5799WElfHO8rXpKDhTx1set757o-jiFbc1Gc_JU1htuWnb2lnTucZz40te9mblz9hJ1cdo9DuH7HV2t5g-JPOn-8fpZJ5YROgSmatlDkbT2AqBCgRSlWJKmUCNMtO5lGYJJi-zDK0ql1WJPatspUEI0BKH7OJwtw3Nx4ZiV6xdtFTXxlP_U5HmEqWUSuzp5YHa0MQYqCra4NYmbIsUin15xX95-AMFcmHY</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xiang, Zhonghua</creator><creator>Cao, Dapeng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Porous covalent–organic materials: synthesis, clean energy application and design</title><author>Xiang, Zhonghua ; Cao, Dapeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-578b70a9e6c4438043ef131e24393529755ab0a7d223c8dbfd3438fcf90440953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorptivity</topic><topic>Clean energy</topic><topic>COM</topic><topic>Joining</topic><topic>Nanostructure</topic><topic>Photovoltaic cells</topic><topic>Porous materials</topic><topic>Solar cells</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Zhonghua</creatorcontrib><creatorcontrib>Cao, Dapeng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Zhonghua</au><au>Cao, Dapeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous covalent–organic materials: synthesis, clean energy application and design</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>1</volume><issue>8</issue><spage>2691</spage><epage>2718</epage><pages>2691-2718</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Porous covalent-organic materials (COMs) are a fascinating class of nanoporous material with high surface area and diverse pore dimensions, topologies and chemical functionalities. These materials have attracted ever-increasing attention from different field scientists, owing to their potential applications in gas storage, adsorptive separation and photovoltaic devices. The versatile networks are constructed from covalent bonds (B-O, C-C, C-H, C-N, etc.) between the organic linkers by homo- or hetero-polymerizations. To design and synthesize novel porous COMs, we first summarize their synthesis methods, mainly including five kinds of coupling reaction, i.e.boronic acid, amino, alkynyl, bromine and cyan group-based coupling reactions. Then, we review the progress of porous COMs in clean energy applications in the past decade, including hydrogen and methane storage, carbon dioxide capture, and photovoltaic applications. Finally, to improve their gas adsorptive properties, four possible strategies are proposed, and high-capacity COMs for gas storage are designed by a multiscale simulation approach.</abstract><doi>10.1039/C2TA00063F</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2013-01, Vol.1 (8), p.2691-2718
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1753555845
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Adsorptivity
Clean energy
COM
Joining
Nanostructure
Photovoltaic cells
Porous materials
Solar cells
Synthesis
title Porous covalent–organic materials: synthesis, clean energy application and design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20covalent%E2%80%93organic%20materials:%20synthesis,%20clean%20energy%20application%20and%20design&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xiang,%20Zhonghua&rft.date=2013-01-01&rft.volume=1&rft.issue=8&rft.spage=2691&rft.epage=2718&rft.pages=2691-2718&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C2TA00063F&rft_dat=%3Cproquest_cross%3E1753555845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1753555845&rft_id=info:pmid/&rfr_iscdi=true