Heuristics for the time dependent team orienteering problem: Application to tourist route planning
The Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW) can be used to model several real life problems. Among them, the route planning problem for tourists interested in visiting multiple points of interest (POIs) using public transportation. The main objective of this problem is t...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2015-10, Vol.62, p.36-50 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | |
container_start_page | 36 |
container_title | Computers & operations research |
container_volume | 62 |
creator | Gavalas, Damianos Konstantopoulos, Charalampos Mastakas, Konstantinos Pantziou, Grammati Vathis, Nikolaos |
description | The Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW) can be used to model several real life problems. Among them, the route planning problem for tourists interested in visiting multiple points of interest (POIs) using public transportation. The main objective of this problem is to select POIs that match tourist preferences, taking into account a multitude of parameters and constraints while respecting the time available for sightseeing in a daily basis and integrating public transportation to travel between POIs (Tourist Trip Design Problem, TTDP). TDTOPTW is NP-hard while almost the whole body of the related literature addresses the non-time dependent version of the problem. The only TDTOPTW heuristic proposed so far is based on the assumption of periodic transit service schedules. Herein, we propose efficient cluster-based heuristics for the TDTOPTW which yield high quality solutions, take into account time dependency in calculating travel times between POIs and make no assumption on periodic service schedules. The validation scenario for our prototyped algorithms involved the transit network and real POI datasets compiled from the metropolitan area of Athens (Greece). Our TTDP algorithms handle arbitrary (i.e. determined at query time) rather than fixed start/end locations for derived tourist itineraries.
•Tourist Trip Design Problem (TTDP): near-optimal multiple-day tourist tours maximizing tourist satisfaction (profit).•Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW): Modeling TTDP incorporating public transit transfers.•First heuristic algorithms incorporating time dependency (with no assumption on periodicity) in travel costs.•The start/end locations of any route are arbitrarily defined within the tourist destination area, at runtime.•Testing on new TTDP-tailored benchmark instances based on POIs and the public transit network of Athens, Greece. |
doi_str_mv | 10.1016/j.cor.2015.03.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753550412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054815000817</els_id><sourcerecordid>1753550412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-c20397e408426069cc5103d8faab8194b0429550bb4fb25ba6b8cab60f712b953</originalsourceid><addsrcrecordid>eNp9kE9L5TAUxcOgME-dDzC7gBs3rTdN0z-6EpkZBcGNgruQpLczebRNTfIEv71X36xcGAK5XM45nPwY-ymgFCCa823pQiwrEKoEWdLmG9uIrpVF26inA7YBCaoAVXff2VFKW6DTVmLD7A3uok_Zu8THEHn-hzz7GfmAKy4DLplnNDMP0dOMGP3yl68x2AnnC361rpN3Jvuw8BzofmTxGHYZ-TqZZSH5CTsczZTwx__3mD3-_vVwfVPc3f-5vb66K5zs-ly4CmTfYg1dXTXQ9M4pAXLoRmNsJ_raQl31SoG19WgrZU1jO2dsA2MrKtsreczO9rlU73mHKevZJ4cT1cCwS1q0SpK_FhVJTz9Jt1R9oXZaND2xkfVHoNirXAwpRRz1Gv1s4qsWoN-p660m6vqdugapaUOey70H6acvHqNOjsg5HHxEl_UQ_BfuNysfisA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690003495</pqid></control><display><type>article</type><title>Heuristics for the time dependent team orienteering problem: Application to tourist route planning</title><source>Elsevier ScienceDirect Journals</source><creator>Gavalas, Damianos ; Konstantopoulos, Charalampos ; Mastakas, Konstantinos ; Pantziou, Grammati ; Vathis, Nikolaos</creator><creatorcontrib>Gavalas, Damianos ; Konstantopoulos, Charalampos ; Mastakas, Konstantinos ; Pantziou, Grammati ; Vathis, Nikolaos</creatorcontrib><description>The Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW) can be used to model several real life problems. Among them, the route planning problem for tourists interested in visiting multiple points of interest (POIs) using public transportation. The main objective of this problem is to select POIs that match tourist preferences, taking into account a multitude of parameters and constraints while respecting the time available for sightseeing in a daily basis and integrating public transportation to travel between POIs (Tourist Trip Design Problem, TTDP). TDTOPTW is NP-hard while almost the whole body of the related literature addresses the non-time dependent version of the problem. The only TDTOPTW heuristic proposed so far is based on the assumption of periodic transit service schedules. Herein, we propose efficient cluster-based heuristics for the TDTOPTW which yield high quality solutions, take into account time dependency in calculating travel times between POIs and make no assumption on periodic service schedules. The validation scenario for our prototyped algorithms involved the transit network and real POI datasets compiled from the metropolitan area of Athens (Greece). Our TTDP algorithms handle arbitrary (i.e. determined at query time) rather than fixed start/end locations for derived tourist itineraries.
•Tourist Trip Design Problem (TTDP): near-optimal multiple-day tourist tours maximizing tourist satisfaction (profit).•Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW): Modeling TTDP incorporating public transit transfers.•First heuristic algorithms incorporating time dependency (with no assumption on periodicity) in travel costs.•The start/end locations of any route are arbitrarily defined within the tourist destination area, at runtime.•Testing on new TTDP-tailored benchmark instances based on POIs and the public transit network of Athens, Greece.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2015.03.016</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Clustering ; Heuristic ; Iterated Local Search ; Mathematical models ; Optimization algorithms ; Orienteering ; Public transportation ; Route optimization ; Route planning ; Schedules ; Studies ; Time Dependent Team Orienteering Problem with Time Windows ; Tourism ; Tourist Trip Design Problem ; Transit ; Travel</subject><ispartof>Computers & operations research, 2015-10, Vol.62, p.36-50</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-c20397e408426069cc5103d8faab8194b0429550bb4fb25ba6b8cab60f712b953</citedby><cites>FETCH-LOGICAL-c389t-c20397e408426069cc5103d8faab8194b0429550bb4fb25ba6b8cab60f712b953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0305054815000817$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Gavalas, Damianos</creatorcontrib><creatorcontrib>Konstantopoulos, Charalampos</creatorcontrib><creatorcontrib>Mastakas, Konstantinos</creatorcontrib><creatorcontrib>Pantziou, Grammati</creatorcontrib><creatorcontrib>Vathis, Nikolaos</creatorcontrib><title>Heuristics for the time dependent team orienteering problem: Application to tourist route planning</title><title>Computers & operations research</title><description>The Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW) can be used to model several real life problems. Among them, the route planning problem for tourists interested in visiting multiple points of interest (POIs) using public transportation. The main objective of this problem is to select POIs that match tourist preferences, taking into account a multitude of parameters and constraints while respecting the time available for sightseeing in a daily basis and integrating public transportation to travel between POIs (Tourist Trip Design Problem, TTDP). TDTOPTW is NP-hard while almost the whole body of the related literature addresses the non-time dependent version of the problem. The only TDTOPTW heuristic proposed so far is based on the assumption of periodic transit service schedules. Herein, we propose efficient cluster-based heuristics for the TDTOPTW which yield high quality solutions, take into account time dependency in calculating travel times between POIs and make no assumption on periodic service schedules. The validation scenario for our prototyped algorithms involved the transit network and real POI datasets compiled from the metropolitan area of Athens (Greece). Our TTDP algorithms handle arbitrary (i.e. determined at query time) rather than fixed start/end locations for derived tourist itineraries.
•Tourist Trip Design Problem (TTDP): near-optimal multiple-day tourist tours maximizing tourist satisfaction (profit).•Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW): Modeling TTDP incorporating public transit transfers.•First heuristic algorithms incorporating time dependency (with no assumption on periodicity) in travel costs.•The start/end locations of any route are arbitrarily defined within the tourist destination area, at runtime.•Testing on new TTDP-tailored benchmark instances based on POIs and the public transit network of Athens, Greece.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Heuristic</subject><subject>Iterated Local Search</subject><subject>Mathematical models</subject><subject>Optimization algorithms</subject><subject>Orienteering</subject><subject>Public transportation</subject><subject>Route optimization</subject><subject>Route planning</subject><subject>Schedules</subject><subject>Studies</subject><subject>Time Dependent Team Orienteering Problem with Time Windows</subject><subject>Tourism</subject><subject>Tourist Trip Design Problem</subject><subject>Transit</subject><subject>Travel</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE9L5TAUxcOgME-dDzC7gBs3rTdN0z-6EpkZBcGNgruQpLczebRNTfIEv71X36xcGAK5XM45nPwY-ymgFCCa823pQiwrEKoEWdLmG9uIrpVF26inA7YBCaoAVXff2VFKW6DTVmLD7A3uok_Zu8THEHn-hzz7GfmAKy4DLplnNDMP0dOMGP3yl68x2AnnC361rpN3Jvuw8BzofmTxGHYZ-TqZZSH5CTsczZTwx__3mD3-_vVwfVPc3f-5vb66K5zs-ly4CmTfYg1dXTXQ9M4pAXLoRmNsJ_raQl31SoG19WgrZU1jO2dsA2MrKtsreczO9rlU73mHKevZJ4cT1cCwS1q0SpK_FhVJTz9Jt1R9oXZaND2xkfVHoNirXAwpRRz1Gv1s4qsWoN-p660m6vqdugapaUOey70H6acvHqNOjsg5HHxEl_UQ_BfuNysfisA</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Gavalas, Damianos</creator><creator>Konstantopoulos, Charalampos</creator><creator>Mastakas, Konstantinos</creator><creator>Pantziou, Grammati</creator><creator>Vathis, Nikolaos</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151001</creationdate><title>Heuristics for the time dependent team orienteering problem: Application to tourist route planning</title><author>Gavalas, Damianos ; Konstantopoulos, Charalampos ; Mastakas, Konstantinos ; Pantziou, Grammati ; Vathis, Nikolaos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-c20397e408426069cc5103d8faab8194b0429550bb4fb25ba6b8cab60f712b953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Heuristic</topic><topic>Iterated Local Search</topic><topic>Mathematical models</topic><topic>Optimization algorithms</topic><topic>Orienteering</topic><topic>Public transportation</topic><topic>Route optimization</topic><topic>Route planning</topic><topic>Schedules</topic><topic>Studies</topic><topic>Time Dependent Team Orienteering Problem with Time Windows</topic><topic>Tourism</topic><topic>Tourist Trip Design Problem</topic><topic>Transit</topic><topic>Travel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gavalas, Damianos</creatorcontrib><creatorcontrib>Konstantopoulos, Charalampos</creatorcontrib><creatorcontrib>Mastakas, Konstantinos</creatorcontrib><creatorcontrib>Pantziou, Grammati</creatorcontrib><creatorcontrib>Vathis, Nikolaos</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gavalas, Damianos</au><au>Konstantopoulos, Charalampos</au><au>Mastakas, Konstantinos</au><au>Pantziou, Grammati</au><au>Vathis, Nikolaos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heuristics for the time dependent team orienteering problem: Application to tourist route planning</atitle><jtitle>Computers & operations research</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>62</volume><spage>36</spage><epage>50</epage><pages>36-50</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>The Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW) can be used to model several real life problems. Among them, the route planning problem for tourists interested in visiting multiple points of interest (POIs) using public transportation. The main objective of this problem is to select POIs that match tourist preferences, taking into account a multitude of parameters and constraints while respecting the time available for sightseeing in a daily basis and integrating public transportation to travel between POIs (Tourist Trip Design Problem, TTDP). TDTOPTW is NP-hard while almost the whole body of the related literature addresses the non-time dependent version of the problem. The only TDTOPTW heuristic proposed so far is based on the assumption of periodic transit service schedules. Herein, we propose efficient cluster-based heuristics for the TDTOPTW which yield high quality solutions, take into account time dependency in calculating travel times between POIs and make no assumption on periodic service schedules. The validation scenario for our prototyped algorithms involved the transit network and real POI datasets compiled from the metropolitan area of Athens (Greece). Our TTDP algorithms handle arbitrary (i.e. determined at query time) rather than fixed start/end locations for derived tourist itineraries.
•Tourist Trip Design Problem (TTDP): near-optimal multiple-day tourist tours maximizing tourist satisfaction (profit).•Time Dependent Team Orienteering Problem with Time Windows (TDTOPTW): Modeling TTDP incorporating public transit transfers.•First heuristic algorithms incorporating time dependency (with no assumption on periodicity) in travel costs.•The start/end locations of any route are arbitrarily defined within the tourist destination area, at runtime.•Testing on new TTDP-tailored benchmark instances based on POIs and the public transit network of Athens, Greece.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2015.03.016</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2015-10, Vol.62, p.36-50 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753550412 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Clustering Heuristic Iterated Local Search Mathematical models Optimization algorithms Orienteering Public transportation Route optimization Route planning Schedules Studies Time Dependent Team Orienteering Problem with Time Windows Tourism Tourist Trip Design Problem Transit Travel |
title | Heuristics for the time dependent team orienteering problem: Application to tourist route planning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T03%3A39%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heuristics%20for%20the%20time%20dependent%20team%20orienteering%20problem:%20Application%20to%20tourist%20route%20planning&rft.jtitle=Computers%20&%20operations%20research&rft.au=Gavalas,%20Damianos&rft.date=2015-10-01&rft.volume=62&rft.spage=36&rft.epage=50&rft.pages=36-50&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2015.03.016&rft_dat=%3Cproquest_cross%3E1753550412%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690003495&rft_id=info:pmid/&rft_els_id=S0305054815000817&rfr_iscdi=true |